IOWA State University

The distribution impact of the social security program, 1962-1972

Nancy Lee Wolff
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Economics Commons

Recommended Citation

Wolff, Nancy Lee, "The distribution impact of the social security program, 1962-1972 " (1984). Retrospective Theses and Dissertations. 8228.
https://lib.dr.iastate.edu/rtd/8228

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missine Page(s)". If it was possible to oblain the missins page(s) or section, they are spliced into the fllm alone with adjacent pages. This may have necessitated culting through an image and duplicating adjacent pases to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good imape of the pags can be found in the adjacent frame. If copyrighted materials were deleted, a target notc will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed. a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

-

Wollf, Nancy Lee

THE DISTRIBUTION IMPACT OF THE SOCIAL SECURITY PROGRAM, 1862. 1072
lowa State Universify
Ph.D. 1884

University Microfilms

$$
\bullet
$$

The distribution impact of the social securiky program, 1962-1972
by

Mancy Lee Wolff

A Dissertation Submitted to the Graduate Faculty in Partial Pulfillment of the Requirements for the Degree of DOCTOR OF PBILOSOPHY

Major: Econcmics

Approved:

Signature was redacted for privacy.

Members of the Comittec:

Signature was redacted for privacy.
In Charge of Major Wofr
Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Gradple college

Lowa state University
 Ames, Iowa

1984

TABLE OF CONTENTS

Page

1. Stateknent of inouiry and results 1
2. historical overview 5
A. 1935 01d-Age Insurance Program 5
B. Spousal Ianafit Prouision 5
C. Progrecaive Bencfit Pormula 12
D. Actuarial Reduction for Early Retirament 14
E. Delayed Retirement Credit 14
P. Earninge Teat 15
G. Coot-of-hiving Adjuetment 17
3. Literature revien 19
1V. TRE LITE-CTCLE HODEL 31
V. METHODOLOGY 38
A. Fairnese Standard 38
B. Study Sample 39
C. Hiatorical Contribution Base and Tax Rates 41
D. Interest Rates 43
E. Survivor Probabilities 44
F. Computational Formulas 45
G. Annuity-Type Counterfactuals 50
H. Earnings Test 50
I. Redistribution Components 52
J. Behavioral Responses 53
Pae
VI. REGRESSION ANALYSIS 56
A. Functional Porm 56
4. Single model 56
5. Marriad model 59
B. Regression Variables 60
6. Dependent variables 60
7. Independent variables 65
VII. RESULT8 74
A. Dascriptive Stetistics 74
8. The bencfit incidence of the 1972 old-age insurance program, ell householde 74
9. Tha affect of differantiel life axpectanciea of males and females on the bencfit incidence for fully-insured bencficiaries 84
10. The effect of retirement year on the benefit incidence of single workers only 95
11. The benefit incidence of the 1972 old-age insurance progrem: Merried, both retired households only 97
12. The effect of sociel security payments on the distribution of income, both retired houscholds only 116
B. Regresaion Resulte 123
13. Single models 124
14. Married models 140
15. Sumary of regression findings 161
VIII. sumany and comclusions 174
A. Sumery 174
B. Conclusions 176
16. Overall programa assessment 177
17. The effect of sex differentials in survivorship on the progran's performance 180
18. The effect of the wife's work status on the progran's performance 182
19. The distribution of spousal benefits 183
C. Concluding Remarks 184
Page
1X. REFERENCES 186
X. ACXNONLEDCMENTS 192
XI. APPENDIX A. ESTHMATION OF MARKET YIELDS ON U.S. GOVERMENT sECURITIES AT CONSTANT MATURITY, 1937-1952 194
XII. APPENDIX B. DATA SET DESCRIPTION 200
XIII. APPENDIX C. TABLES 208
XIV. APPESDIX D. COMPARISON OF COMPOUNDING SCHEMES 215
XV. APPERDIX E. RESULTS 217
XVI. APPERDIX P. DISAGGREGATION OF THE 1937 TO 1950 REPORTED earminges rizasura 225
Page
Table 5.1. Deccription of annuity countarfactuals 51
Table 6.1. Dafinitions of the dapendent variables used in the aingle regreceion equations 57
Table 6.2. Definitione of the independent variablea used in single ragreseion equations 58
Table 6.3. Dafinitione of the dependent variables uaed in the merried regresaion equations 61
Table 6.4. Dafinitione of independent veriebles used in married regraseion equationa 62
Toble 6.5. Porcontage distribution of LTEAR, alngle population only 67
Table 6.6. Percantage diatribution of PLTEAR by houschold type 68
Table 7.1. Benefit incidence of the 1972 old-age insurance program 75
Table 7.2. Effect of the carnings test and cost-of-living indexing on the distribution of redistribution (expressed in percentage terma) for sociocconomic- adjusted annuity benefits 80
Table 7.3. Changes in the percentage of redistribution under different survivorship probability asaumptions 81
Table 7.f. Total annuity benefit received in 1972 controlling for survivorship assuaption, indexing, and earnings test 86
Table 7.5. Percentage point gap between poorest and richest income groups 87
Table 7.6. Rffect of differential life expectancies of females on benefit incidence for single workers controlling for cotal OAI contributions 88
Table 7.7. Effect of differential life expectancies of males on benefit incidence for single workers controlling for cotal OAI contributions 89

Table 7.8. Effect of diffarential 11fe expectancies of foales on banefit incidenca for married workers controlling for cotal OAI contributions, famalas only92

Table 7.9. Effact of differential 11fe expectanciea of walea on benefit incidence for married workera controlling for total OAL contributions, males only

93
Table 7.10. Effact of retirament year on bencfit incidence for
aingle vorkera
Table 7.11. Population diatribution for married, both retired houscholds by family income in 1977 and family Eype98

Teble 7.12. Effect of the wif's work status on wifeonly bencift incidence holding family income conetant (type-6, earninge aduated)99

Table 7.13. Comparison of al and type-6, earnings adfusted annuity benafite for married women with different labor-homeaker choices holding fanily income conetant100

Table 7.14. Effect of the wife's work status on huebend-only bencift incidence holding fanily incoue constent (type-6, earninge adjusted) 103

Table 7.15. Comperison of oni and type-6, adjusted annuity bencfits for married men in onecearner and kwo-earner houscholds holding family income constant104

Table 7.16. Effect of the wife'e work status on family benefit
incidence holding total family income constant
106

Table 7.17. Distribution of income for both ratirad population, before and after pasment of social securicy banefits117

Table 7.18. Distribution of social security benefits to both
retired population by percentage share $\quad 119$
Table 7.19. Distribution of redistribution componente by quintile group controlling for fanily cype and sex121

Table 7.20. Distribution of income for married, both retired
population before and after apportioning the
redistribution component
Page
Table 7.21. Single regreasion model variables and expected coefficient eigns for modela 1, 2, 3, and 4 by aurvivorehip aatuption 125
Table 7.22. Sumary statiselce for independent variables employed in the single regression models 126
Table 7.23. Single regrassion results: Model 1 undef different survivorship assumptions 128
Table 7.24. Single regression results: Model 2, under different survivorship assumptions 131
Table 7.25. SIngle regraasion results Model 3 under differant survivorship assumptions 133
Table 7.26. Single regression reales Model 4, under different survivorship assumptions 136
Table 7.27. Single regression resulcsi Comparison of models i. 2, and 4 uaing gender-merged survivorship probabilizies 137
Teble 7.28. Single regression results Comparison of models 1. 2, and 4 using sociocconomic-adjusted survivorship probabilities 138
Table 7.29. Married regrassion model variables and expected coefficient signs for models 5, 6, 7, and 8 by survivorship asaumpeion 141
Table 7.30. Sumary statistics for independent variables employed in the married regression nodels 143
Table 7.31. Married regression results: Model 5 under different survivorship assumptions 144
Table 7.32. Married regression resules: Model 6 under different survivorship assumptions 149
Table 7.33. Married regression results: Model 7 under different survivorship assumptions 153
Table 7.34. Married regression results: Model 8 under different survivorship assumptions 156
Table 7.35. Married regression results: Comparison of models 5, 6, and 8 using gender-merged survivorship probabilities 159
Page
Table 7.36. Married regreasion resultes Comparison of modele 5 , 6. and 8 using socioecononic-adfuated aurvivorship probebilities 160
Table 11.l. Markat yielda on U.S. govarnment accurities at conetant maturity, 1937-1972 197
Table 11.2. Entimation arror 198
Table 12.1. Sumary etatiotice 202
Table 12.2. Age diatribution by zace, marital atatu, and sax 203
Table 12.3. Yar of retiremant distribution by marital status, aex, and age 204
Table 12.4. Distribution by yaare of school completad and family income in 1972, wan only 205
Table 12.5. Dietzibution by years of shool complated and fenily income in 1972, women only 206
Table 12.6. Dietribution of clain atatue by sex, waritel statu, and age 207
Table 13.1. Annual zeturn rate on U.S. government bonds and stock market, 1937-1972 209
Table 13.2. Consumer price index, U.S. city average, all iteme, 1937-1972 210
Table 13.3. OAI contribution and tax bace, 1937-1972 211
Teble 13.4. Sex-neutral survivor probabilities 212
Table 13.5. Age-sex-race specific survivor probabilities 213
Table 14.t. Comparison of accumulated contributions 216
Table 15.1. Aggregate data for Table 7.1 218
Table 15.2. Changes in the percentage of redistribution due to indexing for married, both retired households 219
Table 15.3. Changes in the percentage of redistribution under different survivorship probability assumptions, nonearning test adjusted for married, both retired households
Page
Table 15.4. Sumanry percentage point comparisons for married, both retired houacholda by annuity type, sex, and houschold type 221
Table 15.5. Male to female differencea in percentage of redistribution controlling for family income and family type 222
Table 15.6. Family Eype differences in percentage of rediatribution controlling for family income and sex 223
Table 15.7. Nonindexed to indexed differences in percentage of redistribution controlling for family income and houachold unit 224

LIST OF FICURES

Page
Figure 7.1. Progressivity of the OAI progrtan uaing socioeconomic-adjuated annuity bencfits controlling for carnings test and indexing 78
7igure 7.2. Progresivity of the OAI progrem uaing different curvival probability aseumptions 85
Figure 7.3. Graphicel comparison of redistribution components, expreseed in percentage terme, by sex and household type 108
Pigure 7.4. Distribution of redistribution components in percentage terme by household type 111
Pigure 7.5. Progrescivity of the OAI program by houschold type, fomales only 113
Figure 7.6. Progressivity of the OAI progrem by houschold type, males only 114
Figure 7.7. Progressivity of the OAI prosram by household type 115
Figure 11.1. Comparison in five-year estimation errors: Eatimated U.8. yielde relative to known yields for 1953-1970 and corporate bond yields relative to yielde on U.S. security yields for 1953-1970 199

1. STATEMENT OF INQUIRY AND RESULTS

For nearly five decades, the social security progran has grown in scope, worker coverage, budgetary significance, and, until quite recently, popularity. Rowever, the federal Old-Age, Survivors, Disability, and health Inaurance (0asDh1) program has entered a new phase in its long, convoluted history-a phase marked by public confusion, critical debate, budgetary insolvency, and controveray. This dissertation investisates a cause of the controversy, the income rediatribution objective of the progrem. The old-age insurance portion of the social security program has two primary objectivea: 1) to insure retirees against ceonomic risk over an uncertain retirement period when potential carninge are low or zero; and 2) to rediatribute income within an age cohort and acrose generations. The former objective alters the pattern of income receipts across the individual's life cycle, whereas the latter alters the distribution of lifatime income within an age cohort and across gencrations. Over time, policgnakers have shifted the emphasis of the prograin away from traditional insurance principles, or "individual equity," coward a distribution of benefita based on the presumptive needs of retired persons and their dependents, or "social adequacy."

[^0]The primary, although not excluaive, emphasis of the program has become an attempt to axtend a ainimum standard of income security to all "affectively" retired persons in pursuance of social justice. The apparent dual nature of the prograw was not problematic until recently because taxes mere kept at acceptable levels, covered retirces mere generally net gainers, and, to a lesser extent, the program was conveniently cast in a craditional inaurance-like framenork. The first generstion of oal beneficiaries received exorbitant rates of return on prior OAI contributions owing to the fact that they had fow years of coverage in the program and a relatively long benefit collection period. Subequent generations have benefitted from the relative lmaturity of the program, which made possible extremely low tax rates and frequent increases in benefit levels. As the system matures, meaning the contribution period eclipses the entire work history, the slze of the intergenerational transfar will diainish. In addition, the probability of being a net loser will increase, drawing further attention to the cause of the potential loser-gainer scenario-the redistribution objective. ${ }^{1}$

This dissertation does not address the legitimacy of the redistribution objective; instead, it seeks to examine the program's effectiveness in redistributing fincome within and across retirement cohorts. Four interrelated issues are investigated: 1) Does the OAI portion of the

[^1]social security program redistribute income in favor of low-income bencficiaries? 2) Does the current OAI progrem rediatribute benefits in favor of women, as a eroup, at the expense of their male counterparts? 3) How does the wife's work statua affoct the distribution of oal bencfite within and across fanily types? 4) Are spousal benefits distributed principally to needy, dependent spouses? Answert to the aforemen= tioned questions are needed to asseas the effectiveness of the current OAI prosra in satisfying its intented objectives and to shed light on inequities and inadequacies resulting from specific provisions in the law.

The distributional inpact of the OAI progren ia isolated by "disentangling" or "decoupling" the insurance portion of the OAI benefits from the redistribution portion. The insurance disentanglement employs the actuarial standard of Burkhauser and Warlick (1981), whereby a retired worker's 1972 OAI benefit level is compared to the bencfit level the worker would have received from purchasing an actuarially fair life annuity with his or her accumulated OAI contribution on the date of retirement. (Burkhaueer and Marlick define this difference as the "transfer component.") The life-cycle framework devised by Burkhauser and Warlick is extended in this dissertation to account for the monthly disbursement of oAl benefits and price indexing. This approach allows us to measure the distributionsl effects of the progressive benefit formula, spousal benefits, and price indexing.

Chapter II presents a brief historical overview of the OAI progran with emphasis placed on features of the law to be examined in this study.

Evidence from previoua empirical studies investigating the distributional impact of the social security program are discuseed in Chapter III. The 11fe-cycle model and conditions for an actuarially fair retirement syetem are presented in Chapter IV. In Chapter V, the assumptions underpinning the model, the data set and sorting technique, computational formulas, annuity-type counterfactuals, and redistribution estmates are briefly explained. The generalined quadratic regression models by marital statue, and a detailed discussion of the model variables are premented in Chapter VI. In Chapter VII, deseriptive evidence and ovidence from the estimetion of the regression models are precented and interpreted. A sumary and conclusions appear in Chapter VIII.

II. historical overview

A. 1935 01d-Age Insurance Program

The social security program in the United States ia a dynamic federal income maintenance program, which has evolved over its brief 49year hiatory from atrictly worker-only retirament program to afullfledged, comprehensive old-age social insurance program. The 1935 oldage program provided retirement benefita to covered workera only. Benefit levels were a function of total covered wages carned by the worker over her work hiatory, and linanced by a tlat-rate payroll tax levied on the amployee and amployer. Although the OAI program wat partially funded, it was not distributionally neutrsi. Initial benefit levels were determined by a mildly progreasive benefit formula, and benefit payments were not edjusted to reflect different life expectancies of male and fomale bencficiaries. Hence, even in the carly years of the progran (prior to 1940, when the first benefits were paid) some redistribution within a cohort, though not across cohorts, was mandated.

B. Spousal Bencfit Provision

A major drawback to the initial program was its relative ineffectiveness in providing adequate income protection for dependents of covered workers, and soon-to-be and already retired workers. Incremental changes in benefit coverage and funding principles were introduced in the form of amendments to the Social Security Act of 1935 to enhance the effectiveness of the program in pursuing the goal of income adequacy for
aged persons-the nation'e most identifiable impoverished group. The 1939 amandmante provided apousal and eurvivor bencfite for women married to covered workers.

The 1937-1939 Advieory Council'e recomendation for noncontributory, aupplementel eacurity benefita to wives and widows of covared norkere was a conscious attempt to ameliorate the aconomic hardahipe imposed on this group of woman because of the incidental retirement or death of the primary carner who, et that time, did not have sufficiant carninge hiatory to atiafy his own econowic neede in retirement let alone those of his dependents. ${ }^{1}$ The recalpt and abaolute aize of the aupplemental bencfite ware linked to the husband's aernings history, presarvins the illuaion of an inaurance program. The aupplemental banefite provided feaily protection, although contributione were baced on an individual Worker'e employment and carnings hiatory excluaively. The OAl program legialated in 1939, and to a lerge extent operating today, effactively cubaidized the treditional fanily structure charscteristic of that tiae period. It is, however, important to note that the Council's recomendation was reflective of the socio-cultural-economic ailieu of that period.

The typical American family in the late 1930s was characterized by life-long aarriages where the female aseumed the primary responsibility

[^2]for nuturance and home management and the male assumed the "breadwinner" role. Married wowen, aa group, had weak labor force attachments and, as a consequence, were disproportionately reprasented outside the labor force. (In 1939, only one out of four married women worked outside the home, and three out of 20 households had both husband and wife employed outaide the home simultaneously.) Most women, therefore, lacked Independent 0AI protection. The presumption of dependency, on behalf of all women, was consistent with demographic characterietice and did eliminate a severe inadequacy present in the original version of the strictly worker-only retirement program.

The Council realized that in the near future, and especially in the distant future, married women would be dually entitled to both primary and apousal retirament benefits. The provision of overlapping benefits to married women as independent earners and dependent spouses was inconsistent with the intent of the noncontributory, eupplemental security bencifit provisions-protecting a needy group from economic hardship resulting fros the "breadwinner's" retirement or death. To avoid the overlapping bencfit problem, the dual-entitlement provision was introduced in conjunction with supplemental benefits as a variant of a means test. According to the dual-entitlement provision, if a married woman is entitled to two benefits simultaneously-primary and spousal (survivor)-she will receive the larger of the two benefits. The base of her benefits is her own primary benefit mount which is then augmented by the difference between her supplemental benefit and primary benefit amounts. The dual-entitlement provision was a noncontroversial addition
to the program because it pertained to a small fraction of the entire beneficiary population, and it was consistent with the generally accepted social adequacy goal of the program.

As mentioned above, the provision of spousal and aurvivor benefite to women married to covered workers in accordance with the dual-entitlement rule was noncontroversial in light of the domographic characterlistics of the 1930s, 1940s, and 1950s. However, as women, especially married momen, increased their participation in the labor force, a greater proportion of female beneficieries quallfied for independent as well is dependent's benefits.! Since the dual-entitement provision guarantees the dually entitled woman the larger of the two bencfits, she must forego the other benefit to which she is entitled. The design of the program gives preferential treatment to dependent, nonworking married women vis-l-vis independent, working married women. A nonworking married woman receives dependent spousal beneffes (equal to 50 percent of her husband's primary insurance amount (PIA)) at a zero marginal cost, whereas a working married moman receives dependent spousal benefits at a mertinal cost equal to her total oal contributions, or primary worker benefits at a marginal cost equal to 50 percent of her husband's PIA. The working married moman mey, either totally or fractionally, duplicate protection already afforded to her when classified as a dependent on her

[^3]husband's account. Hance, the dual-antitlement provision acte an an implicit tax on the working merried woman, aince she receivee oniy marginal accrations to har bancit level in return for har contributions Into the progras. The dual-antitiement provision implicity penalizes the working woman for seeking financial indepandence and aubsidizes the EInancial dopendency of the nonworktng married women. The effact of the dual-antitiement provision may, especially in light of legisiated increaces in the payzoll tax and the relatively low arninge potential of most fealea, have an increasingly severe work-disincentive effect, and, in addition, may erode the progreas women, s group, have made in achieving financial libaration.

In addition to generating inequitiea acrosa married women who have made different labor-homamar decistons, the provision of noncontributory, supplemental benefits ganerates inequities seross household types, depending on marital status and the diviaion of carninge within the household. A two-carner household with equal cernings (a household where the husband and wife are gainfully amployed outside the home) will receive lower combined benefits relative to a one-tarner houschold (a household where etther the husband or wife is gainfully employed outside the home) if the combined carnings of the two-earner unit ls less chan the taxable maximum for a single-earner. A two-earner household receives Aigher benefits compared to a one-earner household when their combined earnings are greater than the taxable maximum for a single earner; however, the two-arner couple pays more in the form of contributions to receive the higher benefit level (Bixby, 1972). The inequities between
the one-earner and two-earner houscholds have become more pronounced in light of the historic four-decade upowing in the employment participation of momen.
single persona, of either sex, are placed in atrategically inferior position in a retirament program that provides family protection based on an individucl worker tinancing echeme. Single households are asisned the same tax liability as married houscholds; however, the married houschold is afforded a greater package of benefita. single and married workers are treaked equally on the contribution aide of the progran, but they are treated as unequale on the bencfit side since the married houcchold ia eligible for dependent benefits not siallarly extended to a aingle person.

The inequities resulting froe the 1939 amendaents may, at firat bluah, appear juatified in light of the social adequacy objective. However, the features of the program and the incidental inequities must be juxtaposed to modern demographic characteriatics to ascertain whether or not the actual effect of the law is consistent with its intent. The payment of spousal benefits presumes the financial dependency of the married monan and atraditional family structure. The traditional 1939 fanily does not typify the family of the 1980s or of the future. The modern fanily is characterized by interdependency rather than dependency. That is, the typical tamily today is an interdependent economic unit in which partners, of cither sex, have occupational choice and, to a large extent, are not forced to assume sterotypical roles mandated by societal norms. Women, as a group, are exercising their right to occupational
choice and seeking covered employment outside the home. ${ }^{\mathbf{1}}$ This protracted trend will intensify the inequities among women who have aade different 1abor-homamater decisions. These inequities are a direct result of noncontributory, supplemental security bencfits coupled with the dualentitlement provision.

There remeine a shrinking proportion of women who choose to be homemakers and, therefore, way need income protection in their retirament years. ${ }^{2}$ According to the oal program, the group of modern-day homemakers is presumed to be an identifiably needy group. Information on the pattern of lifetime work for married women is incomplete; however, most empirical ovidence suggeste that there is an inverie relationship between family income (net of the wife's carnings) and a wife's labor force participation (Eoskin, 1973; Cain, 1966; Garfinkel and Mesters, 1977). This evidence sugsests that the homemaker choice is a more viable option for high-income fanilies, which would tend to refute the needy-group argument supporting the provisions of noncontributory, supplementary bencfits. Holden (1979), using a single-period analysis, found that supplemental benefits were disbursed proportionately to couples in all income categories. Thus, spousal benefics were being distributed to

[^4]spouses who were not needy according to poverty atandards. This isaue is addressed in a life-cycle contaxt to determine if aupplemantal benefits adequetely serve the 1939 objective of protecting a group of aged persons axperiencing economic hardahip. In addition, sex differentiele in survivorthip are maployed to determine if women, as a group, are made differentially better off reletive to their male counterparts aince OAI benefits ere not adjusted to account for different life expectancies between men and women of the same age.

C. Progreasive Benefit Pormula

Traditional inaurance fundins principles were abandoned in 1939 for deficit financing, or whet is more commonly referred to as "pay-as-yougo" financing. The deficit financing provision mandated intergenerational tranafers from the currently working population to the retired, nonworking population. ${ }^{l}$ The disbursement of benefite to retired persons wes based on a progressive benefit formula. The formula has become slightly more progressive over time.

The OAI program, by design, favors low-income houscholds through the retirement benefit formula used to determine the worker's primary

[^5]insurance mount (PIA) from her average monthly earnings (AME). ${ }^{1}$ The retirament bencfit formula ia atructured to pay higher marginal and average benefit ratea as the benefit base (AME) decreases. Therefore, the raplacement rate (the ratio of retirement bonefits to preretirement cernings) is higher for low-income houscholds relative to high-income households. But high-income households receive more cash benefits per month in absolute dollars. The original oal benefit formule was mildly progressive. The formula applied to avarage monthly earnings limited to $\$ 250$ and paid 40 percent of the firat $\$ 50$ plus ten percent of the next \$200. This formula has been periodically revised to favor low-income households. In 1972, the formula paid 108.01 percent of the first $\mathbf{5 1 1 0}$ plus 39.39 percent of the next $\mathbf{\$ 2 9 0}$ plus $\mathbf{3 6 . 7 1}$ percent of the next $\mathbf{\$ 1 5 0}$ plus $\mathbf{4 3 . 1 5}$ percent of the naxt $\$ 100$ plus 24 percent of the next $\$ 100$ plus 20 percent of the next $\$ 250$.

This study exmines the distributional impact of the progressive benefit formula to ascertain whether, in fact, low-income beneficiaries receive preforential treatment in the disbursement of benefits vis-f-vis high-income beneficiaries. The progressivity of the benefit formula has

[^6]> been disputed because of empirical evidance auggecting that socioeconomic characteristice infiuance life contingencies.

D. Actuarial Reduction for Early Retitement

The actuarial raduction in the monthiy bencite amout payable on entitlemant applies to retired workers and dependente aged 62 to 64. The intent of this provision was to equalise the total actuarial value of bencfits recelved by the bencliciary independent of the age of retircanc. In 1956, provisions wore added to the law permiteing famale bencficiaries to accept retirament bencfits at age 62. If the fomale benciciary applies for early primary benefits (in advance of age 65), her PlA is reduced by $5 / 9$ of one percent per month under age 65 (maximum reduction of 20 percent). Dependents' bencilite are reduced by 25/36 of one percent per month under age 65 with maximum raduction cap of 25 percent. Identical provisions mere extended to male beneficiaries in 1961.

E. Delayed Retirament Cradit

The bencit level (PIA) is adjusted upward if the primary beneficiary elects to retire after age 65. Like the actuarial reduction provistion, the accretion feature mas intended to equalize the actuarial value of the bencfit strean independent of the age of retirement. As of 1972, a covered worker's benefit level was adjusted upward if she remains actively employed and she does not accept retirement between ages 65 and 72. Benefits were increased by $1 / 12$ of one percent for every month the
covered worker postpones retirement after age $65 .^{1}$ Accretions in benefit levels are truncated at age 72. This adjustment in benefits for delaying retirement is leas than the actuarial adjustment for the shorter life expectancies of older beneficiaries; hence, the postponement of retirement is transiated into a real loas in bencfits over the remaining life span. ${ }^{2}$

7. Earninge Test

The carnings or recirement test is a eype of means test which reduces bencfits to bencficiaries who continue to work past the age of 65. An earnings test has been in effect since 1935. According to the 1935 carnings test, all retirement benefits would be withheld if the beneficiary received any labor earnings during retirement. The extortionate nature of this test was, however, felaxed priof to the payment of the first benefits in 1940. The 1939 version of the carnings test permitted labor-related earnings up to $\$ 15$ per month without the loss of retirement benefits; however, all bencfits were forfeited if carnings exceeded \$15. Since 1939, the carnings limit has been augmented periodically.

In 1972, retirement benefits were reduced if the beneficiary remained employed after receiving retirement benefits and her earnings

[^7]ware in excese of 19 parcent of the annual taxable maximum. Benefita Nere reduced by one dollar for every two dollara of post-retirament earnings between $\$ 1,680$ and $\$ 2,880$, but benefits were reduced by one dollar for every dollar of earnings above $\$ 2,880$. 1 Rowever, bencfits ware not raduced for worker-baneficiarias who were 72 or older in $1972{ }^{2}{ }^{2}$

From a poilicy point of view, the carninge test is conaiatent with the besic purpose of social security, which is to fractionaliy replace lost earnings because the gged worker retires from the labor force. But, Erom the beginning, the carninge teat hat ben controversial and atrongly criticiaed. The " $\$ 1$ for $\$ 2$ and $\$ 1$ for $\$ 1$ " withholding rite (or " $\$ 1$ for \$2" withholding rate since 1973) has been criticised because the withholding rate applies to labor income only (axcluding nonwork incoae sourcan like dividends, rents, and penaion pasments) and for discouraging healthy alder persons from secking gainful amployment in the market. The burden of the 50-to-100 percent witholding rate falls heaviest on the low-income aged because of their greater rellance on social security and employment carnings for financial security during retirement. Studies of the financial holdings of the aged show that woat low-income persons do not have access to private pensions, private inaurance, savings, and

[^8]other nonwork income sources to sugment their retirement benefits (Freidman and sjogren, 1981; Kurray, 1972; Sherman, 1973). Koat evidence suggests that the financial status of low-income persons remains unchanged at the outaet of retirement in spite of "social security" for several reasons: 1) retirement benefits only partially replace employment carninga; 2) retirement bencfite are reduced if the retiree has eupplamental post-retirement earnings in excess of the earnings ceiling; and 3) low-income persons generally have insufficient nonwork income sources.

G. Cost-of-Living Adjustment

In the mid-1960s, influential persons in Congress and the exacutive branch begen to push for a bigger role for social security as an income source for the elderly. Congress approved benefit increases of 15 percent in 1969, ten percent in 1971, and 20 percent in July of 1972. In October, 1972, Congrese paseed the Social security mmendmenta of 1972. The major features of this legislation were proviaions for indexing the wage base uned in computing initial benefits and for using the consumer price index to adjuat payments to current bencficiaries. Although automatic indexing was lesislated in 1972, it did not become effective until 1975. Legislated increases were substituted for automatic indexing in 1973 and 1974. ${ }^{1}$ Benefits paid to current beneficiaries are annually

[^9]Indexed whenever the consumer price index (CPI) rises by more than three percent. ${ }^{1}$

The social security retirement syatom is intended to insure beneficiaries againat the economic risk of longevity. Indexing of benefits enhances this form of ingurance in an inflationary environment. Secause women, as a group; have a longer life expectancy than men, they receive on avarage more banefits from indexing. Indexing of benefits for retired workers keeps intact the relative benefit atructure, aince all benefit atreams are adjusted by the aame Index.
$1_{\text {Benefits are adjusted annually if the CPI changes by three percent }}$ or more. If the CPI changes by less than three percent in a year, benefits will not be indexed until the cumulative change exceeds three percent.

III. LITERATURE REVIEW

Although the ofective charscteristice of the oal program. including the extent of ingurance protection, have changed over time, its initial Intent of providing edequate protection ageinet long-term uncertainties sasociated with the ceseation of labor force participation becsuce of old se has remained undiminished. Spectfic features that have been addad to the progran over time, compromising ite 1935 insurance principles, ultimately influance the cetimeted aize of the rediatribution component. However, the gradusi shifting cowards social adequacy hae engendered blases in the progran's operation. The alleged biases include the preferential treatment of women, traditional family atructures, low Income houscholds, and nonworking persons age 65 to 71. A more suble. but no lesa important, bas incidental to the progran concerne differential aurvivorship. Mortality atudies indicete that apecific sociosconomic characteristice influence survivor probabilities (Antonovaky, 1972; Cove, 1973; Kitagave and Houcer, 1973; Hetropolitan Life. 1975). In a retirement progran that paye bencfite for the duration of life, persons wich lomer survivor probabilities (or shorter 1ife expectancies), as reflected by apecific, identifiable socioeconomic

[^10]factors, subadize persone with relativaly highar survivor probabilities (or longer life expectancies). ${ }^{1}$

The effecte of the aformentioned biaces (program- and workerspecific) have been invastigated in nuearoue empirical studies uaing different data basee (representative individual and individual case history approachea), model essumptions, equity measuree, and program and fairness definitions. However, Independent of the methodology employed, virtually all empirical etudiaa indicate that social securiky beneficiarica retiring prior to 1975 received above-normal ratae of return on their contribution dollars, independent of income classification and other socioeconomic cheractariatica (Aaron, 1974; Brittain, 1972a; Burkhouser and Warlick, 1981; Campbell and Campbe11, 1967; Chen and Chu, 1974; Freiden, Loimer and holfman, 1976; Okonkwo, 1976; Ozawa, 1974). Although there is consenaue on the "money'a-worth" iasue, there is less agreement concerning the overall prograsaivity of the program (Aaron, 1974; Freiden, Leimer and Boffman, 1976; Okonkwo, 1976; Ozawa, 1974).

Analysts using single-period methodology have acknowledged the OAI program as being the moat effective U.S. government program in rediatributing income to an impoverished group (Danziger, 1977; Danziger and Plotnick, 1975; Lampman, 1971; Ozawa, 1974). The cross-seceional findings purporting the "success" of the program, in terms of decreasing

[^11]income inequality acrosa all income classes, can be explained by several factors. Firat, the progressive benefit formula replacea a larger percentage of the lowwage carner's preratirment earninge than for the high-wage earner. The redistributive function of the formula would tend to reduce post-retirament income differentials within a retirement cohort, ceteria paribus. Second, a large percentage of the aged is eligible for retirement bencfite. The blanket coverage of the progrem enhances the income position of all income classes within retirement cohort and improvea their income atanding relative to the working population. The third factor pertaine to the absolute size of the tranafors to the aged. Public asaiatance is considered to be the most economically efficient progran of all incomemaintenance programa; however, social security, while beins economically less efficient, hat the greatest rediatributive impact. Thia apparent disparity between economic efficiency and rediatributive impact is best explained by the following analogy: a 100 percent share of a peanut is seill a peanut, but a 50 percent share of an elephant is half an elephant. That is, the amount of cotal bencfits received by the targeted population depends on economic efficiency and the total amount of the outlay. In 1971, social security (OASDI) and railroad retirement programs paid out $\$ 39$ billion in cash benefits compared to cash benefits totalling $\$ 10$ billion under public assistance. The last factor to be discussed concerns the use of crosssectional methodology to assess the performance of a life-cycle program. Cross-sectional investigations into the performance of the social security program assess the redistributive impact of the program by
examining the degree of income inequality before and after the payment of retirament bencfits. Clearly, this approach fails to account for the "income emoothing" function of the prosran; hence, it tends to overstate the rediatributive impact of the program. ${ }^{1}$ Resulte derivad from the aingle-period analyset are atrongly disputed by researchers using lifecycle models of the OAI progrmin.

Many researchers have investigated the effect of the social security program (OAI, OASI, and OASDI) on the distribution of lifetime income within a life-cycle framework. The diatributional impact has been measured in terme of lifotime internal rates of return, lifetime contribution-benefit ratios, and Durkhauser-Narlick-type "transfer" components (initial 0asi benefit levels less the benefit received from a life annuity purchased with the worker's accumulated OASI contributions on the date of retirement). The absolute size of the distributional impact measure has been found to be sensitive to specific identifiable factors, such as date of retirement, marital status, sex, race, income class, education level, and age at entry and retirement. The empirical estimates of redistribution also depend on the richness of the data base and the model assumptions regarding benefit inclusion, payroll tax shifting, life expectancy tables, and market interest rates. Several of the major findings from studies using each measure are discussed below.

[^12]Studias inveatigating the extant to which the social security program rediatributes lifetime income among subgroupa of an age cohort uaing an internal rate of raturn meaeure have generally found that the intarnal rate of raturn on OAI (OASDI) contributions is nagatively related to income, date of retiramant, age at ratiramant (relative to age 65), education level, and poaitively related to age at entry. Internal rates of return were also found to be higher for women, nonwhite races, and married persons. Furthermore, rates of return were found to be higher for all subgroups the less the assumed backward shifting of the employer's share of the payroll tax. Similarly, the absolute aize of the rate of return for specific socioeconomic groups varied depending on the extent to which life expectancy tables were disaggregeted. Also, real internal ratea of return were found to be aignificantly smaller than nominal ratea, where the gap between the real and nominal measures increased the larger the inflation rate relative to the annual rate of growth of retirement benefits.

The most comprehensive studies using the internal rate of return measure have been conducted by Okonkwo (1976) and Freiden et al. (1976). Okonkwo, uaing longitudinel age-earning profiles estimated from four successive U.S. population censuses and life expectancies disaggregated by sex, race, and education levels, found that the internal rates of return were higher for couples relative to single persons, higher for nonwhites relative to whites, and higher for houscholds located in the south as opposed to the north. He also found that rates of return varied inversely with education level; specifically, workers with eight years of
achooling received the highest return and workers with 16 or more years of schooling received the lowest internal rate of return, independent of race, marital status, region, sex, or type of tax (OAI, OASDI). However, the degree of redistribution, weasured by the gap between the internal rates of return across education levels, for the white subgroup is reduced by the longer life expectancies for white persons with more education; hence, the degree of progressivity (attributable to the 1974 benefit formula) was waskened when adjusting for the larger survivor probabilities for whites with more education. In concluaion, akonkwo argues that the social security program redistributes income to blacks and low-income whites as intended by the law, but that the redistribution effect is dampened by the differential survivorahip probabilities. Aaron (1974), on the other hand, finds that differential mortality rates fully offset the prograssivity built into the retirament bencit formula; hence, the redistribution flow is reversed, having a perverse effect on the distribution of lifetime income.

Freiden et al. (1976), using the Continuous Mork History Survey and survivorahip probabilities disaggregated by age, sex, and race, found the OAI progran to be "very" progressive. That 1s, internal rates of return were found to be significantly higher for low-income subgroups relative to high-income subgroups. Like Okonkwo, Preiden et al. found that women received higher real rates of return than men, everything else equal.

Other studies have estimated contribution-benefit (C-B) ratios and "transfer" components to measure redistribution. These studies generally support the findings of the studies employing internal rates of return.

The $C-B$ atudies show that the $C-8$ meacure is negetively related to the markat intarast rate used to accumblate contributiona and discount benafits (Drittain, 1972a; Chan and Chu, 1974). Burkhaucer and Warilck (1981), using the 1973 Exect Match File to cotimete annuity-type "transfar" componanta, found that all income clasee in the 1972 ratiremant cohort raceived poaftive banafit tranafari from the oAl program. In addition, they found thet the amount of radiattibution, rasured in sboluta dollara, wat roughly equal for high and low-income eubgroupa. The alddle-income abgroup receivad the largeat tranafar from the program overall.

The highar rates of raturn ascociated with marital statua, date of retirament, age at ratircmant, and incoma can be axplained by the progran's dasign in conjunction with diflarential survivorship probabiliciae. Other fectors influencing the size of OAI returns, such as sax, race, and education, can be explained by differential survivorship probabilities.

The Mgher returns associazed with marital status are atcributable to two independent fectors: 1) the OAI program, by design, subsidizes the traditional (one-earner) fanily atructure through the provision of spousal benefits in accordance with the dual-entitlement rule; and 2) married persons, independent of race and sex, have longer iffe expectancies, on average, than their nonmarried, divorced, or widowed counterparts.

The first factor is related to the progran's design whereby a nonworking married person receives dependent spousal benefits (equal to

50 percent of the spouse'e primary insurance amount (PIA) at a zero cost, whereaa a working married person recelves dependent apousal benefite at a cost equal to her total oal contributions or primary worker benefite at a cost equal to 50 percent of her spouse's PIA. Recall according to the dual-entitlement provision, aperson entitled to two benefits sfmultancously will receive the larger of the two benefits, but must forego the other benefite to which she is entitied. A similar partiality cowards married couples is exposed when single persons are compared to married persons claiming dopendents' bancfite with the ame prior contributions. The aingle person receivea a lower rate of return on her (his) initial OAI contributions relative to amaried person collecting dependents' benefits with the same OAI contributions, since a married person is cligible for dependents' benefits not similarly extended to a eingle person without dependents. Burkhauser (1979), ueing data from the 1973 Eract Match File, found that one-aarner married couples fare better than either two-earner married couples or single individuals because one-earner households receive spousal banefits at no additional charge, and single persons are forced to participate in a retirement system designed for married persons.

The second factor pertains to the longer life expectancy of married persons. Mortality atudiee conclusively show that married persons of each race and sex have longer life expectancies than nonmarried, divorced, or widoved counterparts (Gove, 1973; Ritagava and Hauser, 1973;

[^13]Metropoliten Life, 1975). It is interesting to note that the differences batwean marriad and unmerried atatuses ore much greater for men than for women. Tor instence, white, single males age 65 and over experienced mortality 44 percent greater than the level of white, married malee comparably aged. similarly, white, single famalea age 65 and over have mortality levels nine percant higher than comparably aged white, married temalea. A single person has a shorter life expectancy, on average, relative to married person of roughly the ame age, everything elae equal. Both of thase factors taken together exert upward praseure on the rate of return on oal contributione for the treditional fanily atructure relative to the nontraditional family structura, although married parsons, onc-earner or two-earner, fare better than single persone.

The date-of-retirment factor reflecte the reletive maturity or immaturity of the retircment program. The firat gencration of oal retirees received exorbitent ratea of return on their prior oal contributions owing to the fact that they had few yeara of coverage in the program and erelatively long period of benefit collection. Subsequent generations have benefitted from the relative immaturity of the program, which made posible extremely low tax ratee and frequent increases in benefit levels. As the syatem matures, meaning the contribution period eclipses the entire work history, the size of the intergenerational transfer and subsequent rates of return on prior OASI contributions will diminish. Parsons and Munco (1977) contend that within the next 50 years

[^14]the intergenerational tranafor will disappear coapletely; hence, each ratiramant cohort will diatribute amonget ite mambers the amount of monay they initially paid into the program. Praidan at al. (1976) atudied the retiremant cohorte frow 1967 through 1970 focuaing on workarmonly bencficiarias. Although all coafficiente were amall, they found thet the 1968 retirese' fates of raturn were 2.27 percent highar than the 1967 ratiraad', wharaee the 1969 ratiraes' ratee of raturn were 1.76 percant lowar than the 1967 ratirase'. There wae no aignificant diffarance found between the retee of return for the 1970 and 1967 retireas. Durkhauser and Warlick (1981) found e genaral decline in the parcantage of rediatribution over tiac. Dy dividing the 1972 cohort into three age cohortes 66-67, 72-75, 81-85, they found that the oldeat age cohort receivad the largeat intargenarational cranafors and that the youngeat age cohort raceivad the smellest.

Income is an important factor in determining the overall progreaaivity of the OAI program. The program, by design, favors low-income houscholds through the retirement benefic formula ueed to determine the worker's PIA from her (his) average monthly earnings (AME).' The retirement benefit formula is structured to pay higher marginal and average bencfit rates as the benefit base (AME) decreases. Therefore, the replacement rate (the ratio of retirement benefits to preretirement earnings) is higher for low-income units relative to high-income units,

[^15]although high-income unite raceive more cash benefite per month in absolute dollara. Moat atudiea have found the OAI program to be prograsaive. Vraidan at al. (1976) eatimated the elasticity of the internal rate of return with reapect to lifetime income for OAI bencfite of $\mathbf{- . 2 7 8}$. Other atudies uaing a broader definition of benafits and more disaggragated mortality ratea have shown lese progreasivity than the Freiden et al. atudy (Okonkwo, 1976; Aaron, 1974).

The ege-at-ratirement factor intluances the siza of the return because of the carly-retirament and delayed-retirament featurea of the program. Persons who choose to remain employed between the agee of 65-72 receive additional retirement bencfite according to the nuaber of incremental monthe employed during thia age period. The PIA is increased by $1 / 12$ of one percent for each month retirement is delayed after age 65 with a maximum edjuetment of seven percent if the worker should remain employed until age 72. The acerction to the PIA, however, underatates the shorter life expectancy of the worker who delaye retirement. Alternatively, the actuarial reduction in the PIA for early retirement (recirement age of 62 to 64) is excessive. Freiden et al. (1976) found that the optimum age at retirement, in terms of maximizing the internal rate of return, is 65.

The last factor to influence the rate of return or extent of redistribution is differential mortality rates. The Kitagawa and Hauser study (1973) on differential mortality zates in the United States indicates that socioeconomic factors, especially sex, race, occupation, income, eduction, and marital status, influence the individual's

Abstract

probability of dying at (aurviving eo) apecific life age. The effact of marital status on survival was mentionad earlier and, hence, will not be discuseed further. Mortality rates were found to be nagativaly relatad to income and aduction, which alicit the oppoaite affact of the prograssive benefit formula on rates of return. Mortality rates were also found to be higher for men relative to women and nonwhites relative to whites. Hance, women, on average, can expect to recaive a higher return on their OAI contributions vis-l-vis male counterparts given that, ceterie paribus, women have, on average, longer life expectancies than men. Preiden at al. (1976) found that women can axpect retes of return on their oal contributions that are approximetely 8.8 percent higher than men, everything else equal, and that nonwhites can axpect rates of raturn epproximately 1.9 percent lower then whites.

IV. THE LIFE-CYCLE MODEL

To evaluate the redistribution of the OAI program, the program was be divided inte two flows of money-an inflow of contributions and an outflow of benefits. During the worker's earning years she pays in a flow of contributions, in the form of a flat-rate payroll tax, carmarked for the OAI program in exchange for a promise of ateady atream of real income in the latter phace of her life cyele. The accumulated value of the worker's contribution, TC_{i}, paid in over the work history is determined using a traditional compounding acheme and a nontraditional rollover compounding scheme.

The traditional compounding scheme calculates the total OAI contributions, $\mathrm{TC}_{i}^{\mathbf{l}}$, credited to the covered worker's account on the date of retircment by

$$
\begin{equation*}
T C_{i}^{l}=\sum_{y=B}^{R E} T_{y i} \underset{j=y}{R E}\left(1+r_{j}\right) \tag{4.1}
\end{equation*}
$$

where $T_{y i}=0 a 1$ contributions in year y for individual i,
$F_{j}=$ annual yield on U.S. government bonds in year j.
RE = year of retirment, and
B = first year in covered employment.
The nontraditional roll-over scheme calculates the total OAI contributions, $T C_{i}^{2}$, by the generalized form of

$$
\begin{equation*}
C_{y i}=I_{y i}\left(1+r_{w}\right)^{v}\left(1+r_{z}\right)^{z}\left(1+r_{x}\right)^{x} \tag{4.2}
\end{equation*}
$$

where $C_{y i}=$ compounded value of individual i's contributions paid in
year y in the retirement year, $r_{w}, r_{z}, r_{x}=$ appropriate $\mathbf{U . S .}$ bond rates, and
$w, z, x=$ bond maturitica.
The value of total oAl contributions, TC_{i}^{2}, is calculated by edding together the compounded annual contributions, or

$$
\begin{equation*}
T C_{i}^{2}=\sum_{y=B}^{R E} c_{y i} . \tag{4,3}
\end{equation*}
$$

Annual contributions are carried through time according to abond roll-over schame. That ia, it ia assumed that the government invests the full amount of the worker's yearly OAI contributions, eredited to her account as of the end of the year in question, into a government bond with the longest maturity that does not exceed the number of years from the date of investment to retirment. The coupon and principal are rolled over famediately upon maturity into the next longest bond that has a maturity period no longer than the difference between the roll-over date and the expected date of retirement. The superscripts w, z, and x reflect different bond maturities and sum to the number of years from year B to the retirment date.

The value of oAI contributions, $T_{y i}$, in equations (4.1) and (4.2) depends on the year the income is carned, y, the amount of income earned, $E_{y i}$, relative to the maximum taxable earnings base, M_{y}, and the relevant OAI tax rate, ε_{y}. The individual's taxable earnings for the years 19371950 was determined by
a) $T_{y i}=\varepsilon_{y} E_{y i}$
when $E_{y i} \leq M_{y} x$ and
b) $I_{y i}=c_{y} E_{y i}+1 / 2 t_{y}\left(E_{y i}-H_{i}\right)$
when $E_{y i}>M_{y}$.

For the years 1951-1954, taxable earnings were determined in three different mays depending on the type of income earned and the relationship between income carned and the maximum taxable carnings base. In the first case, total earninge are equal to the sum of wages, $W_{y i}$, plus selfemployment income, $I_{y i}$, but are less than the maximum taxable earnings base $\left(E_{y i}=W_{y i}+I_{y i}<X_{y}\right)$. In this case, taxable carnings are determined by

$$
\text { c) } T_{y i}=\varepsilon_{y} W_{y i}+\varepsilon_{y s} I_{y i}
$$

where E_{ya} = the sell-employment oal tax rate. Case two partains to the case where total carnings exceed the maximum taxable earnings base, but total wages do not ($z_{y i}>n_{y}$, but $w_{y i}<n_{y}$); then,
d) $T_{y i}=t_{y} W_{y i}+\varepsilon_{y s}\left(H_{y}-W_{y i}\right)$.

The final case is identical to the pro-1951 formula when taxable earnings, $W_{y i}$, are equal to, less than, or greater than the maximum taxable carnings base. Tor the years after 1955 , total wages are defined as the sum of agricultural and nonagricultural wages and taxable earnings, T_{yi}, are calculated using the 1951-1954 formulas.

The revenue strean marked "contributions" qualifies the worker for primary and spousal benefits provided she satisfies the eligibility criteria established by the social security laws effective in the year of retirement. The discounted present value of the expected oal benefit stream for a single person on the date of retirement is

$$
\begin{equation*}
\mathrm{g}_{\mathrm{i}}^{8}=\sum_{K=0}^{99-R} \sum_{t=1}^{12} \frac{R(12)+\mathrm{K}(12)+E^{P} R(12)_{0}^{b}(1+C)^{K}}{(1+i)^{R(12)+E}} \tag{4.4}
\end{equation*}
$$

and the discounted present value of a couple's oAI benefit atrean is
$s_{i}^{c}=\sum_{k=0}^{99-R} \sum_{t=1}^{12} \frac{b_{0}(1+c)^{k} 2}{(1+i)^{R(12)}+t}$
where
$Z=R(12)+R(12)+E^{P_{R}^{M}(12)}+R(12)+R(12)$
$+E^{P_{R}^{F}(12)}-0.5\left(R(12)+X(12)+e^{P_{R}^{M}(12)} \cdot R(12)\right.$
$+R(12)+E_{R(12)}^{P}$
$t=$ number of bencfic paymant periods per year,
99-R = number of years in the retirement period,
$R=$ the retircment age of the worker and spouse,
$R(12)+X(12)+t^{P^{M}} \mathbf{R}(12)=$ the probability of the male retiree surviving
to life age $R(12)+\pi(12)+t$ given he is
already life age $R(12)$ (expressed in months),
$R(12)+X(12)+E^{P^{\mathbf{F}}} \boldsymbol{R}(12)=$ the probability of the female retiree surviving
to life age $\mathrm{R}(12)+\mathrm{R}(12)+t$ given she is
already life age $R(12)$ (expressed in months),
b_{0} " the initial oal benefit level received at the
end of the first month of retirement,

[^16]```
C = the expected growth in prices in subsequent
years, and
1. the discount rate.
```

The life-cycle model of contributions and bencfits represented by equations (4.1) through (4.5) captures the salient fatures of the OAI program. That ia, workers pay in atream of income during their earning years and receive atream of income in their retirament yaars, where the right to the bencilt etream depends on their past participation on the "contribution" aide of the exiating programe Thia ia not to imply, however, that the contribution and bencite streams have any tangible relationship axcept that prior contributiona qualify the worker for future bencfite. The two revenue streame are not worker specific and need not be comparable in value. The value of the contribution atrean depends on the number of earning years, the placoment of the earning years in the work history, the worker's taxable earnings in those years, the OAI contribution rate and bace, and the interest rate. The value of the bencfit streas depends on the discount rate, the growth in future prices, the retiree"s life expectancy, and the initial bencfit payment. The velue of the initial bencit payment, in turn, depends on the worker's average monthly carnings, the progressive benefit formula, age at retirement, familial characteristics, and post-retirement earnings level.

Redistribution, wthin the intertemporal framework, is determined by the relationship between the total value of the accumulated contributions (4.1, 4.3), and the present discounted value of the expected OAI benefit
stream (4.4, 4.5). If the following condition holds for an individual,

$$
\begin{equation*}
\left.T C_{i}^{1,2}\right\rangle B_{i}^{s, c}, \tag{4.6}
\end{equation*}
$$

then the individual is expected, on average, to receive retirment benefits that are greater than (less than) the accumulated value of her OAI contributions. In this case, the OAI progrem affects the lifetime income atream for the individual (couple) within the retirament cohort. similarly, redistribution across cohorts occurs if

$$
\begin{equation*}
\sum_{i=1}^{n} \pi c_{i}^{1,2}>\sum_{i=1}^{n} s_{i}^{s, c} . \tag{4.7}
\end{equation*}
$$

An actuarially fair retircment mould satisfy the following two conditions:

$$
\begin{align*}
& T C_{i}^{1,2}=g_{i}^{5, c} \text {, and }  \tag{4.8}\\
& \sum_{i=1}^{n} T C_{i}^{l, 2}=\sum_{i=1}^{n} s_{i}^{s, c} . \tag{4.9}
\end{align*}
$$

For instance, if each individual purchases an actuarially fair life annuity with her accumulated contributions, then she can expect, on average, to receive abencit streate exactly equal to her original lump sum premium (condition 4.8). An annuity purchased with her cotal OAI contributions at the point of retirement insures the individual againat economic risk over an uncertain life span by redistributing income from her relatively high earning years to her low earning years. The value of the monthly annuity payment depends on the value of the lump oum premium,
the annuitant's age ot retiremant, the discount rete, the survivorihip table, and the infletion rate (see Chapter $V$, section F). Given the above model and definitions of an actuarially fatr retirament program, the bancficiary's banafit lavel can be dividad elong functional lines. The actuarial componant of the individuel's OAI bencfit paymant is the annuity paymant which setisfies condition (4.8). The difference betwaen the retirec's 1972 banefle level (b) and the annuity bancfit (b) would rendar the amount of radictribution from the program. The redistribution component for individual 1 is, therafore. defined as followe

$$
\begin{equation*}
R C_{1}=b_{01}-b_{a 1} \tag{4.10}
\end{equation*}
$$

## V. METHODOLOGY

A Life-cycle model of the OAI program is amployed to preserve the link between prior OAI contributions paid into the program over the worker's earnings history and oal benefits received by the beneficiary during retirement. The contributory systam modeling of social security is conaistent with the individual equity analysis undertsken in this study. However, it is not meant to lmply that the contribution and bencif streame have any tangible relationship oxcept that prior contributions "qualify" the worker for future bencfits.

The model discussed in the provious section mes estimated to examine the impact of differential mortality rates, age at retirement, sex, marital status, income, post-retirment earninge, and price indexing on the oal redistribution component. In this section, the aesumptions of the model, the data set and sorting technique, computational formulas, annuity-type counterfactuals, and rediatribution estimates will be briefly discussed.

## A. Fairnese Standard

The OAI progran can be, and frequently is, evaluated on the basis of two conflicting standerds of fairness. If fairness, for instance, is defined as giving more to those persons with ageater relative need, then the social adequacy goal of the program is the main focal point of analysis. The relative need standard of fairness evaluates the program's performance in terms of whether or not greater income protection is
extended to thoce aged pertons with greater relative neede, independent of previous oAl contributions. However, if fatrness means ectuarisily fair or, in other words, giving wore to those persons with a larger initial inveatmant, then the individual equity goal of the program is emphasized. The relstive investment standard of fairness evaluses the performance of the program in terma of actuarially fatr rates of return on cots OAl contributions. This latter definition of lairness is most frequenty used to ancwer whether or not on individual beneficiary is receiving her (hia) "money's worth" from the government program.

In this study, an actuarial standard of fairness is employed to determine whet a covered morker would have recelved from an acturially lait retirament progre.

## B. Study Sample

Date on the sociocconomic charscteriseice, 1972 OAI benefic level, and OAI bencfit and clain status information for persons represented in the study sample were obtained from the 1973 Curfent Population SurveyAdministrative Racord Exact Match File. The 1973 Exact Match File unites survey recorda for persons fncluded in the March, 1973 Curtent Population Survey to their corresponding benefit and earninge information in the administrative records of the Social Security Administration and to specific items frow their 1972 IRS individual income tax returns (Aziz, Kilss, and Scheuren, 1978; Kiles and Scheuren, 1978; Scheuren and Tyler, 1975). Additional earnings information was obtained from the Longitudinal Social Security Exact Match File, 1937-1976. This file includes
longitudinal earnings date on adults reprasented in the 1973 Exact Match File. The atudy ample included 353 aingla peraona aged 62 and oldar and 2,771 couplas whera at laast one member mat age 62 or oldar (the data set is described in datail in Appandix B).

A record from the 1973 Exact Match File was included in the study saaple if: ${ }^{1}$

1. the individual was 62 or older,
2. retired between 1962 and 1972,
3. reprecented a "good match," ${ }^{2}$
4. the claia code in 1972 indicated retired, special age-72 or
tranaitional claia type, and
5. the beneficiary code in 1972 indicated worker only or wife.

This atudy investigates the OAI program exclusively; hence, reported bencfits include primary worker, spousal, transitional, and special age72 benefits. ${ }^{3}$ The level of primary worker benefits received by the

[^17]worker beneficiary ia a function of the worker's average monthly earnings, age at retirement, and level of poat-retirement carnings. Spousal benefita are 50 percent of the retired worker's primary inaurance amount adjusted for the apouse's retirement age and poat-retiremant earnInge. All of the aformentioned benefit levels are automatically indexed to the conaumer price index beginning in 1975.

OAI bencficiaries are dietinguiehed by the following socioeconomic characteriaticas

| Sex | (male, female), |
| :--- | :--- |
| Race | (white, nonwhite), |
| Education | $(0-7,8,9-11,12,13+)$, |
| Age | $(62-64,65,66-72,73+)$, |
| Marital atatua (married, nonmarried). |  |

The sex, race, education, and marital atatue definitions and divisions are consistent with the Kitagava and Hauser (1973) definitions and divisions. The age diviaions are selected to monitor specific features of the social security program.

## C. Historical Contribution Base and Tax Rates

Covered workers and their respective employers are aesessed a proportional payroll tax on earnings up to the annual maximu taxable 1imit. In 1937, a combined employee-employer two percent payroll tax was assessed on the first $\$ 3,000$. Both the contribution base and payroll tax rate have been periodically increased since 1937. By 1972, the combined tax rate was 9.2 percent applied to the first $\$ 9,000$. The contribution
base and tax rate are based on the historical serias located in Appendix C, Table 13.3. The initial impact of the OAI payroll tax rate is shared equally by employeea and employers; however, it is assumed that the final burden of the tax ia borne by labor, f.e., that there is 100 percent bsckward shifting.!

The historical tax rate series amployed in this study is based on the OAI tax rate serica constructad by leimer (1976). Laimer uaed a hiatorical-net-expenditure-decomposition technique to divide pest OASDI contributiona along functional linea according to net expenditurea on three separate and diatinct social security programs: old-age, survivor, and disability. The OAI tax rate series wal derived by allocating a share of the OASDI tax rate according to the proportion of tocal program expenditures accounted for by the OAI portion in every year. Expenditures on old-age insurance differs from survivor and disability inaurance

[^18]In that OAI represente saving for retirement, whereaa SI and DI provide term insurance prior to retirement. ${ }^{1}$

## D. Interest Rates

A low rate of return was selected in determining the compounded value of total OAI contributions. The annul yield on U.S. government bonds from 1937 to 1972 was used in the traditional compounding scheme (see Appendix C, Table 13.1). For the roll-over cheme, the market yiald on U.S. government securicies at conatant maturicy froa 1937 to 1972 was employed (see Appendix A, Table ll.l). A low rate of return was selected for both compounding schemes because of the riskless nature of the retirement investment. The "absence of risk" is assumed since the government etsentially guarantees the worker full repayment of OAI contributions upon retirement.

To further replicate the progran's design, the roll-over scheme was introduced into the analysis. The inancing design of the social security progran is as follows: 1) the government compels covered workers (and their employers) to pay socfal security taxes; and

[^19]2) workers do not have access to this money until retirament at which time it ia repaid in monthy stipends for life. The OAI contributions are essentially "tied-up" indefinitely, Aa mentioned earlier, the guaranteed repayment feature impliea a riakless investment. The "tiedup" feature suggests a long-term inveatment, or an investment period equal to the difference between the year of retirament and the year in which the contribution-investment is made. Both the certainty and timing features of the oal program are reflected in the roll-over scheme. The roll-over schame acaumes the govarnment invasts the worker's contribution into a government bond with the longest maturity that does not axceed the number of years from the date of investment to retirement. Upon maturity, the coupon and principal are immediately rolled over into the next longest bond that has a "correct" maturity period. While it is technically true that the worker could "cash out" of a bond with an "incorrect" maturity period offering a higher yield on the date of retirement, it is assumed that the funds are "tied up" in riskless investments with ginimal portiolio management. The differance between the traditional and roll-over total contribution measures are shown in Appendix D, Table 14.1.

## E. Survivor Probabilicies

Three tables of survivor probabilities were used to calculate annuity counterfactuals. Survivor probabilities describe the statistical probability of a person life age $x(s a y, 65)$ surviving to life age $x+1$ (say, 66). The age-specific (gender-merged) and age-race-sex-specific
tablea are based on Social Security Administration (SSA) survivor probabilitiea for persona 62 and older and Vital Statiatice Life rables for persons younger than 62 (see Appandix C, Tablee 13.4 and 13.5). The SSA probabilitiea were cetimated uaing 1968-1969 Medicare data for persons who were elther covered by Hospital Ineurance or Supplemental Madical Ineurance and at least 62 yaars old (Bayo, 1972; Myera and Bayo, 1965).

In addition, a tabie of survivor probabilitiea differentiated by age, race, sex, marital atatue, education, and income was ueed. The sociosconomic adjusted eurvival probebility table la based on tables constructed by fitagave and hauser (1973) and modified by Leimer (1978).

## F. Computational Formulas

Burkhauser and Warlick (1981) estimated "transfer" component (1972 Oasi benefit level less the actuarially fair bencit level) from lifecycle model uaing the 1973 Exact Match File. The actuarially fair counterfactual was an mmediate whole life annuity payable on an annul basis. " This dissertation extends their work to account for the monthly disbursement of benefits and indexins. The annuity is assumed to be purchased on the date of retirement with the retirement candidate's total OAI contributions. The first benefit payment from the actuarially fair retirement insurance is received at the end of the first month of the retirement period.

[^20]The variables used to calculate the formulas discussed in this section are as follows:

PV $=$ present value of a one dollar unindexed whole llfe annuity payable monthiy,
$P V^{C}$ - present value of a one dollar unindexed joint-and-two-thirds whole life annuity payable monthly,
$\mathrm{PV}^{\mathrm{S}^{*}}$ = present value of a one dollar price-indexed whole life annuity payable monthly,
$\mathrm{PV}^{\text {C }}=$ present value of a one dollar price-indexed joint-and-twothirds whole life annuity payable monthly,
$\mathrm{n}=$ male's age at retirement,
$\overline{\mathrm{B}}=\mathrm{female} \mathrm{s}$ age at retircment,
 given she is already life age $\overline{\mathrm{R}}$,

101- $\overline{\mathrm{R}}=$ number of years in the retirement period,
$i=$ discount rate ( 0.05 percent),
$\mathrm{J}=$ wife's age at husband's retirement,
2 = husband's age at wife's retirement,
s E deferment period $|\mathbf{R}-\mathbf{Q}|$,
$Q=$ retirement age difference between husband and wife (R $-\overline{\mathrm{A}}$ ),
$K=$ age difference between the husband and wife,
c - expected growth in future prices, ${ }^{1}$
$i^{\prime}$ = indexed discount rate ( 0.02189 percent), and

[^21]$X$ = age of the oldest mumber of the couple at the and of the deferment period.

The retirement candidate purchases an actuarially fair life annuity with her total OAI contributione ( $\mathrm{TC}_{i}^{1,2}$ ) on the date of retirament (RE). The present value of a one dollar nonindexed life annuity payable 12 times a year purchased by a aingle perion is

$$
\begin{equation*}
P V^{s}=\left\{\sum_{t=1}^{101-\bar{R}} \frac{1}{(1+i)^{t}} \bar{R}+t{ }^{8} \bar{R}\right\}+\frac{11}{24} . \tag{5.1}
\end{equation*}
$$

The present value of a one dollar nonindexed joint-and-two-thirds annuity payable 12 timea a year purchased by each mamber of a couple on the dete of retirgment is ${ }^{1}$

$$
\begin{equation*}
P V^{C}=\left[\int_{3}^{2}\left(\int_{t=1}^{101-R} \frac{1}{(1+i)^{t}} R+t^{\delta} R\right]+\frac{11}{24}\right) \tag{5.2}
\end{equation*}
$$

$$
\left.+\frac{2}{3}\left(\frac{1}{(1+i)^{6}} j+\varepsilon^{8}\right]\left[\left(\sum_{t=1}^{101-\bar{R}} \frac{1}{(1+i)^{t}} \bar{R}^{8}+\varepsilon^{8}\right)+\frac{11}{24}\right\}\right)
$$

(b)
(c)

$$
\left.-\frac{1}{3}\left(\frac{1}{(1+i)^{s}} J+s^{8} J \quad R+s^{8} R\left\{\left(\sum_{t=1}^{101-x} \frac{1}{(1+i)^{\varepsilon}} \bar{R}+\varepsilon^{\delta} \bar{R} \cdot z+\varepsilon^{s} z\right)+\frac{11}{24}\right\}\right)\right]
$$

(d)
(e)

[^22]Term (a) in equation (5.2) is a restatement of equation (5.1) and states that the person purchasing the annuity will receive $2 / 3$ of one if he lives. The second term states that the apouse will receive $2 / 3$ of one when she is eligible for retirmant (in the case where the husband is purchasing the annuity). Term (b) is the discount and survivorship factor capturing the deferment period for spousal benefits in the case where the spouse ia younger than the husband and not of retirement age. The age difference betmen the husband and wife is equal to $K$ years, the difference in their retirgaent agea, $R=\bar{R}$, equale $Q$, where $R$ is the huaband's age at retirament and $\overline{\mathrm{R}}$ is the apousc's retirament age. The length of deferment period equals A , where $:|\mathrm{R}-\mathrm{Q}|$. if $\mathrm{R}=\mathrm{O}$ and $Q=0$, then $=0$ and terme $(b)$ and $(c)$ collapse to $2 / 3 F v^{8}$-the annuity formula for a single person muleiplied by $2 / 3$.

Term (e) in equation (5.2) is a joint-life annuity and it defines group failure when the first member of the group diea or fails to qualify for bancit payments. Failure to qualify in this case meane one of the members does not meet the oal eligibility criteria. The joint-life annuity pays only if both persona are alive and retired and provides payments for the duration of the shorter surviving status. Term (d) accounts for the time value of money and the compound probability of both members surviving the deferment period (s).

The price-indexed annuity formula guarantees payment of real stream of income over the annuitant's retirgment period. The nonindexed
formulas discuased above are modified by a CPI expected growth factor and an adjusted intereat rate. ${ }^{1}$

The present value of a one dollar price-indexed life annuity payable 12 times a year purchaed by a single person is

$$
\begin{equation*}
\left.P v^{S *}=\left(\left\lvert\, \frac{1}{(1+c)} \sum_{t=1}^{101-\bar{R}} \frac{1}{\left(1+i^{\prime}\right)^{\varepsilon}} \bar{R}+E^{s} \bar{R}\right.\right\}+\frac{11}{24}\right) \tag{5.3}
\end{equation*}
$$

The present value of a one dollar price-indexed joint-and-two-thirds life annuity payable 12 times per year purchased by each member of a couple is

$$
\begin{aligned}
& P V^{C+}=\left\{\frac{2}{3}\left(\left\lvert\, \frac{1}{(1+C)} \sum_{E=1}^{101-R} \frac{1}{\left(1+i^{\prime}\right)^{E}} R+E^{8} R\right.\right\}+\frac{11}{24}\right) \\
& +\frac{2}{3}\left(\frac{1}{\left(1+i^{\prime}\right)^{8}} j^{8} s^{s}\left\{\left(\frac{1}{(1+c)} \sum_{t=1}^{101-\bar{R}} \frac{1}{\left(1+1^{\prime}\right)^{t}} \bar{R}+t^{8} \bar{R}\right)+\frac{11}{24}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \left.\left.\left.2+\varepsilon^{8} z\right)+\frac{11}{24} \mathrm{j}\right)\right] \text {. }
\end{aligned}
$$

The price index formulas state that the retiroment candidate purchases a one dollar life annuity and a series of staggered deferred life annuities paying increments of $(1+c)$. The nominal accretions in income each year will maintain the real purchasing power of one dollar over the

[^23]individual's retirement period, assuming that the actual intlation rate equals the axpected rate.

## G. Annuity-Type Counterfactuals

There are 12 annuity-type counterfactuals estimated in this study. The counterfactuals are described in Table 5.1. Annuiky-Eype counterfactuals mimic the leatures of the OAI program and differ in terms of the survivor probability tables used, the compounding scheme employed, and whether benefits are indexed or nonindexed. The value of the monthly annuity benclit is dependent on the accumulated value of OAI contributions, the extent of insurance protection, and the degree to which the insurer can "Eailor" benefits to reflect differentials in survivorship.

## H. Earnings Test

The annuity benefits were adjusted for the earnings test. The modeling of the carnings test reflects the legisiated earnings test in 1972.

A beneficiary's annuity bencfic was adjusted by reduction fackor, R $H_{i}$ : if earnings in 1972 exceeded $\$ 1,680$. The reduction factor is calculated by

$$
\begin{align*}
\operatorname{RLD}_{i}= & 1 / 2\left(\operatorname{REP}_{2}-1,680\right)  \tag{5.5}\\
& \text { if } \operatorname{REP}_{i} 2_{i} \leq 2,880 ; \text { or }
\end{align*}
$$

Table 5.1. Description of annuity counterfactuals

| Annuity counterfactual | Charectariatics |
| :---: | :---: |
| Type 1 | Treditional compounding scheme, nonindexed formula, and gendermerged eurvivorahip tables |
| Type 2 | Traditionel compounding scheme, nonindexed formula, and sex-race-diatinct survivorahip tables |
| Type 3 | Treditional compounding schene, nonindexed formula, and cocioeconomic survivorohip tebles |
| Type 4 | Traditional compounding echame, indexed formula, and gendar-merged survivorship tablea |
| Type 5 | Traditional compounding schame, indaxed formula, and sex-race-diatinct survivorship tables |
| Type 6 | Treditional compounding achame, indexed formula, and sociosconomic survivorship tablea |
| Type 7 | Roll-over compounding schame, nonindexed formula, and gendar-merged survivorship tables |
| Type 8 | Roll-over compounding scheme, nonindexed formula, and sex-racediatinct survivorship tables |
| Type 9 | Roll-over compounding scheme, nonindexed formula, and sociocconomic survivorship tablee |
| Type 10 | Roll-over compounding scheme, indexed formula, and gender-merged survivorship tables |
| Type 11 | Roll-over compounding echeme, indexed formula, and sex-race-distinct survivorship tables |
| Type 12 | Roll-over compounding scheme, indexed formula, and socioeconomic survivorship tables |

$$
\begin{align*}
R E D_{i}= & 600+\left(R S P 72_{i}-2,880\right)  \tag{5.6}\\
& \text { if REP72 }{ }_{i}>2,880
\end{align*}
$$

Where REP72 $i^{\text {a }}$ beneficiary $i^{\prime}$ s 1972 reported carnings.

## 1. Redistribution Components

The counterfactuals deccribed above were used to calculate the redistribution components, $R_{i}$. The redistribution componants determine the portion of the bencficiary's 1972 social security benefits which she did not pay for, but which represents an intergenerational transfor from the current working population.

For single beneficiaries, the redistribution components were calculated by the following:

$$
\begin{align*}
& R C_{i j}=b_{o i}=b_{i j} \text { for } j=1,2,3,7,8,9 ; \text { and }  \tag{5.7}\\
& R C_{i j}=b_{o i}=b_{i j} \text { for } j=4,5,6,10,11,12 \tag{5.8}
\end{align*}
$$

where $\operatorname{Rc}_{\mathrm{ij}}$ and $R \mathrm{Cl}_{\mathrm{i} j}=$ bencficiary i 's redistribution component for annuity-type $j$,

$$
b_{\text {oi }}=1972 \text { oal bencfit level for beneficiary i, }
$$

$$
b_{i j}=\text { nonindexed annuity-type } j \text { benefit level for }
$$ beneficiary $i$, and

$b_{i j}=$ indexed annuity-type $j$ benefit level for beneficiary $i$.

The redistribution component calculations for married persons are similar to the components calculated for single persons but require the inclusion of both the husband and wife's annuity-type benefit. Family
annuity bencfits from the joint-and-two-thirds annuity were asaumed to be equally owned by the husband and wife. The "equally-owned" acaumption has important implications in terms of the relative share of redistribution received by men and women in different housahold types.
$1 f$ the husband and wife are retired, then the redistribution components for each mamber of the couple are calculated by

$$
\begin{align*}
& R C_{i j}=b_{01}=.5\left(b_{i j}+b_{i j}\right) \text { for } j=1,2,3,7,8,9 ;  \tag{5.9}\\
& \mathcal{Z}^{R C_{i j}}=\mathcal{B}_{0 i}=.5\left(b_{i j}+b_{i j}\right) \text { for } j=1,2,3,7,8,9 \text {; } \tag{5.10}
\end{align*}
$$

where $b_{\text {oi }}=$ female's 1972 oal benefic,
_bo male's 1972 oal benefit,
$b_{i j}=$ female $I^{\prime}$ 's nonindexed annuity-type $j$ benefit level,
$\mathcal{D}_{i j}=$ male $i^{\prime}$ s nonindexed annuity-type $j$ benefit,
$b_{1}=$ female $i^{\prime \prime} s$ indexed annuity-cype $j$ benefit level, and

If only one member of the couple is retired, then the redistribution calculations are identical to those calculated for single persons.

## J. Behevioral Responses

The removal of the worker-finance retirement insurance was accomplished by estimating a series of worker-specific actuarially fair counterfactuals assuming no behavioral responses. That is, it was
ascumed that worker participante would not reapond by altaring their labor or ataing deciaions when retirament benefite were calculated uaing atrictly-fnauranca bencfit formulas at compared to the OAI ratirament benefit formula. An actuarially fair retiremant ayatam wat uced only as - counterfactual to determine the ratiremant benafita the workerbencficiary actually paid for through oal contributions after contribu= tions were already paid into the system. This annuity-type counterfictual was then used to isolate the alze of the benefite the bencficiary received from the "social adequacy" function of the government'e retirement program. The bencfit dicentanglement wae undertaken with the sole Intention of aasesaing the bencfit incidence of the transfers received by the 1972 retirement cohort from the current working population. The incidence was exemined to taolate the affects of sociocconowic characteriatice on the direction and size of the tranafera and to enaure that the Intent of the law was conalatent with the oversil effect of the program. The ex post annuity calculations and comparisons used in this study are confined to the narrow disentanglement interpretation discussed above. They cannot be accurately interpreted to reflect the offect of a program awitch from the current OAI progrem to an actuarially fair retirement system. Eapirical reaults, to date, show that the social security program does effect labor supply and savings decisions (Boskin, 1977; Burkhauser, 1980; Burkhauser and Quinn, 1981; Feldstein, 1974; Pellechio, 1978). In addition, research by Browning (1975) and Burkhauser and Turner (1978) indicates that an actuarially fair
retirement system would have aignificant labor supply implicetions acrose the life cycle.

In light of existing empirical research on the economic affecte of the social security prograw, atudy on the privitisation of the social security program would necessitate ex ante modeling of an actuarially fair retirement system which would fully incorporate behavioral responces by worker participants. At best, this study only approximates the affects of privitiantion of the social security program.
VI. REGRESSION ANALYSIS

In this chapter, the single and married models estianted to isolate the effect of worker characteristice on the percentage of rediatribution are presented. Section A includes a description of the generaliaed quadratic models for single and married houscholds and the model variables. Model variables, independent and dependent, are discussed in detail in Section 8.

## A. Functional Form

## 1. Single model

The following generalized quadratic model was estimated to isolate the partial effect of worker-specific characteristics on the percentage of redistribution $(x):{ }^{\text {l }}$

$$
\begin{align*}
X= & \beta_{0}+\beta_{1} \text { LTEAR }+\beta_{2} \text { LTEAR2 }+\beta_{3} \text { SEX }+\beta_{4} \text { RACE }+\beta_{5} \text { SERLEM } \\
& +\beta_{6} \text { SERLEM }+\beta_{7} \text { RAGERI }+\beta_{8} \text { RAGER2 }+\beta_{9} \text { RAGER } \\
& +\beta_{10} R C O H O R T 1 ~+\beta_{11} R C O R O R T 2 ~+\beta_{12} E D U L ~+\beta_{13} E D U 2 \\
& +\beta_{14} R D U 3+\beta_{15} E D U 4 \tag{6.1}
\end{align*}
$$

where the dependent and independent variables are defined in Tables 6.1 and 6.2, respectively, and explained in section VI.B. Four permutations
${ }^{1}$ Loglinear and linear forms were also estimated; however, the quadratic form provided the best fit of the data.

Table 6.1. Definitions of the dependent variablea used in the aingle regression equations

| Variable | Deacription |
| :---: | :---: |
| $\mathrm{RRC}_{\mathbf{1 j}}$ | The nonindexed, nonearninge-adjuated rediecribution component for individual $y$ as a percentage of individual j'e 1972 OAI bencfit level, where 1 equals type-1, type-2, or eype-3 annuity counterfactual. |
| RRC ${ }_{4}{ }_{3}$ | The indexed, nonearninge-adjuated redietribution component for individual f as a percentage of individual $\mathrm{f}^{\prime} \mathrm{s} 1972$ OAI benefit level, where 1 equals Eype-4, eype-5, or type-6 snnuity counterfectual. |
| $\operatorname{ERRC}_{1 j}$ | The noniadexed, carninge-sdjusted redistribution component for individual $j$ as a percentage of individual j's 1972 OAI benefit level, where $i$ equals type-1, type-2, or type-3 annuity counterfactual adjusted by the carnings teat. |
| $\mathrm{ERRCH}_{3}$ | The indexed, earninge-sdfusted redistribution component for individual $j$ as a percentage of individual j's 1972 OAI bencfit level, where 1 equals type-4, type-5, or type-6 sanuity counterfactusl edjusted by the carninge test. |

Table 6.2. Definitions of the independent variables used in single regression equations

| Variable | Description |
| :---: | :---: |
| LTEAR | Accumulated value of lifetime carnings (in hundreds of thousands) |
| LTEAR2 | LTEAR squared |
| SEX | Dummy variable for sex: 0 for male, 1 for female |
| RACE | Dummy variable for raca: 0 for white, 1 for nonwhite |
| serles | Service length in covared employment |
| SERLEN2 | SERLEA squared |
| RACERI | Dummy variable for retirement age: 1 for sge 62-64, 0 otherwise |
| RMGER2 | Dumy variable for retirament age: 1 for age 66-71, 0 othervise |
| RAGER3 | Dumay variable for retirement age: 1 for age 72 and older, 0 otherwise |
| RCOHORT1 | Dumany variable for retirement cohort: 1 for year 1962-1965, 0 otherwise |
| RCOHORT2 | Dumay variable for retirement cohort: 1 for year 1966-1968, 0 otherwise |
| coul | Dummy variable for years of education completed: 1 for years 0-7, 0 orherwise |
| EDU2 | Dumay variable for years of education completed: 1 for years 9-11, 0 otherwise |
| EDO3 | Dummy variable for years of education completed: Ifor year 12, 0 otherwise |
| EDU4 | Dumay variable for years of education completed: 1 for years 13 or more, 0 otherwise |

of the generalized single model were estimated, where the models diffarad by apecification of the dependent variable only. The purposes of conatructing these four differant models were, first, to see if variables significant in explaining the percantage of redistribution changed under various counterfactual dafinitions, and, secondly, to detarmine if thare were any unaxpected sign reversale in the paremeter estimates. Since this atudy attempte to account for the affact of worker characteristics and program features on the size of the redistribution component, 12 measures of redistribution were used as dependent variablea; each measure was calculated identically, in technical sense, but different annuity counterfectuals ware employed in each measure to net out the "workerpurchased" insurance component. For future reference, the eatimation of
 referred to as models $1,2,3$, and 4, respectively. Each model is estimated using three different mortality rate assumptions.

## 2. Married model

To isolate the partial effect of family-specific characteristics on the percentage of redistribution for a husband-and-wife family unit ( $\mathbf{Y}$ ), the following generalized quadratic model was estimated; ${ }^{1,2}$

[^24]\[

$$
\begin{align*}
& Y=\beta_{0}+\beta_{1} \text { FLTEAR }+\beta_{2} \text { FLTEAR2 }+\beta_{3} \text { RACE }+\beta_{4} \text { SERLEN } \\
& +B_{5} \text { SERLEN }+\beta_{6} \text { SERLEN2 }+B_{7} \text { SERLEN2 }+B_{0} \text { RAGER1 } \\
& \text { + } \beta_{9} \text { RAGER2 + } \beta_{10} \text { RMGER3 + } \beta_{11} \text { RAGER1 + } \beta_{12} \text { RAGER2 } \\
& \text { + } \beta_{13} \text { RCOHORT1 + } \beta_{14} \text { RCOHORT2 + } \beta_{15-R C O H O R T 1 ~} \\
& +\beta_{16} \text { RCOHORT2 + } \beta_{17} \mathrm{EDU1}+\beta_{18} \mathrm{EDU2}+\beta_{19} \mathrm{EDU3} \\
& +B_{20} \mathrm{EDU4}+\beta_{21} \mathrm{EDU1}+\beta_{22} \mathrm{EDU2}+\beta_{23}{ }^{\text {EDU3 }} \\
& +\mathrm{B}_{24} \text { 80u4 } \tag{6,2}
\end{align*}
$$
\]

where the dependent and independent variables are defined in Tables 6.3 and 6.4, respectively, and explained in section VI.B.

Again, 12 versions of model 6.2 mere estimated, differing by dependent variable only. The dependent variables are lebelled $\mathrm{FAM}_{\mathrm{ij}}{ }^{\prime}$
 TNA $H_{i j}$, $\operatorname{EFM}_{i j}$, and $E F N_{i j}$ will be subsequently referred to as models 5 , 6, 7, and 8, respectively. Each model is estimated ueing three different mortality rate assumptions.

## B. Regression Variables

## 1. Dependent variables

Twelve annuity counterfactuals were constructed for each household type, differing by program features or life contingency assumption. Annuity counterfactuals distinguish one dependent variable from another.

Table 6.3. Definitions of the dependent variables used in the married regression equations

| Variable | Description |
| :---: | :---: |
| FAH ${ }_{1 j}$ | The nonindexed, nonearnings-adjusted redistribution componant for family $J$ as a percentage of family $j^{\prime}$ 's 1972 OAI benefit level, where 1 equals type-1, type-2, or type-3 annuity counterfactual. |
| FARH0 | The indexed, nonearnings-adjusted rediseribution component for family $j$ a a percentage of family j'a 1972 OAI benefit level, where 1 equala type-4, type-5, or type-6 annuity counterfactual. |
| $\mathrm{EFAH}_{\text {ij }}$ | The nonindexed, carninge-adjusted redistribution component for family $j$ as a percentage of family j's 1972 OAI benefit level, where 1 equals type-1, type-2, or type-3 annuity counterfactual adjuated by the carninga test. |
|  | The indexed, earnings-adjusted redistribution component for fandy $j$ as a percentage of family $\mathrm{J}^{\prime}$ ' 1972 OAI benefit level, where 1 equals type-4, type-5, or type-6 annuity counterfactual adjusted by the earnings test. |

Table 6.4 Definitions of independent variables used in married
regression equatione

| Veriables | Descripeion |
| :---: | :---: |
| flicar | Accumulated value of fenily lifetime earnings (in hundreds of thousands) |
| RIEAR2 | HLEAR equared |
| RACE | Dumy variable for race: 0 for white, 1 for nonwhite |
| SERLEA (_SERLX) | service lensth in covered employment for wife (husband) |
| SERLHN2 (_SERLEN2) | gerume (_SERLHA) squared |
| RMOER1 (_RMCRR1) | Durny variable for wife's (husband's) retirament age: 1 for age 62-64, 0 ocherwise |
| RMCER2 (_RNCER2) | Dumy variable for wife's (husband's) retirement age: 1 for age 66-71, 0 otherwise |
| RACER3 | Dummy variable for wife's recirement age: 1 for ase 72 and older, 0 otherwise |
| RCOHORT1 (_RCOHORTI) | Dumay variable for wife's (husband's) retirement cohort: 1 for year 1962-1965, 0 otherwise |
| RCOHORT2 (_RCOHORT2) | Dumy variable for wife's (husband's) retirement cohort: 1 for year 1966-1968, 0 otherwise |
| 8001 (_H001) | Dumm variable for years of education completed by wife (husband): 1 for years 0 -7, 0 otherwise |
| EDU2 (_8DU2) | Dumm variable for years of education completed by wife (husband): 1 for years 9-11, 0 otherwise |
| $4 D 03$ (_EDU3) | Dummy varisble for years of education completed by wife (husband): 1 for year 12, 0 otherwise |
| E044 (EDU4) | Dummy variable for years of education completed by wife (husband): 1 for years 13 or more, 0 othervise |

Recall, annuity counterfactuale were conatructed to disentangle the ontitled insurance payment of the OAI benefit from the interganarational rediatribution payment. Counterfactuala range from traditional lifa annuities based on highly agsregated survivorship assumptions to indexad, earnings edjuated life annuities reflecting highly disaggregated survivorship assumptions. The single and married generslized models are estimated using alightly different dependent variables to lsolete how specific survivorship easumptions or program features influence the redistributional incidence of the OAI program. This subssetion will describe how each dependent variable wes calculated for each household type.
a. Percentage of rediatribution for the single model (RRC ${ }_{i j}$, RRCII, ERRC ${ }_{i j}$, ERRCIf ) There are four generic measurea of redistribution for each single household. Esch generic measure is diatinguished by a progrem feature (with or without indexing; with or without carninge edjustmente), and, within cach measure, three survivorship probabilities aseuptions were imposed (gender-merged, sex-race-distinct, sociocconomic-adjueted). The calculations used to determine the percentage of rediatribution under various assumptions for single houscholds are as follows:

$$
\begin{align*}
\operatorname{RRC}_{i j}= & \frac{\operatorname{BEM72} j-T B_{i j}}{B E A 72} \times 100 \\
& \text { for } i=\text { type-1, type-2, type-3, } \tag{6.3}
\end{align*}
$$

$$
\begin{align*}
& \text { for } 1 \text { - еype-4, type-5, type-6, }  \tag{6.4}\\
& \operatorname{ERRC}_{i j}=\frac{\text { BENT2 }_{j}-\text { ATB }_{1 i}}{8 E N 72_{j}} \times 100 \\
& \text { for } 1 \text { - type-1, type-2, type-3, } \tag{6.5}
\end{align*}
$$

$$
\begin{align*}
& \text { for } 1 \text { = type-4, typa-5, type-6, } \tag{6.6}
\end{align*}
$$

where $\mathrm{m}_{i j}=$ nonindexed, nonearninge-adjusted type-i annulty bencfit for individual j ,
$\mathrm{TB}_{1 j}$ - indexed, noneerninga-adjuated type-1 annulty bencfit for individual j ,

ATB $_{\text {ij }}$ - nonindexed, carnings-adjusted type-i annuity bencit for Individual j , and

ATB if $^{\text {- Indexed, earnings-adj usted type-1 annuity benefit for }}$ Individual J .
b. Percentage of redistribution for the married model (FAM

FAM, LFAM $_{11}$, EFAM, The four generic measures of rediatribution for each sarried houschold are:

$$
\begin{align*}
& \mathrm{PAM}_{i j}=\frac{\text { FBEM72 }-7 B_{i j}-\mathrm{IB}_{i j}}{\operatorname{FBIT} / 2_{j}} \\
& \text { for } 1 \text { = tуре-1, гуре-2, куре-3, } \tag{6.7}
\end{align*}
$$

$$
\begin{align*}
& \text { for } 1=\text { type-4, type-5, type-6, } \tag{6.8}
\end{align*}
$$

$$
\begin{align*}
& \text { for } 1 \text { - Eype-1, Eype-2, type-3, } \tag{6.9}
\end{align*}
$$

for 1 = type-4, type-5, type-6,
where FBRN72 = the sum of the wife and husband's 1972 oni benafit
amounts,
$\mathrm{TB}_{i j}\left(\mathrm{IB}_{i j}\right)=$ nonindaxed, nonearninge-adj uated type-i annuity
bencitit for the wife (hueband) in household $j$,
for the wife (husbend) in household $j$,
for the wife (husband) in houschold $J$, and
the wife (husbend) in houschold j .

## 2. Independent variablea

a. Accumulated value of lifetime earnings (LTEAR, LTEAR2, PLTEAR.

FLTEAR2) The lifetime earnings variables (LTEAR, LTEAR2; PLTEAR, ILTEAR2) are two of four quantitative variables included in the generalized polynominal model. LTEAR reflects the individual's lifetime earnings stream on the date of retirement by a single number. FLTEAR is the sum of the husband and wife's lifetime earnings streams. LTEAR and

FLTEAR mere expected to have negative coefficionte, whereas LTBAR2 and FLTEAR2 were expected to have positive coefficiente. The sumary measure of lifetime carnings we calculated astuming:
(1) annual reported taxable earnings (REP ${ }_{1}$ ) were received at the beginning of each year; and
(2) the earninge skream was trunctied on the dake of retirement (YBEGIN2).

Accordingly, the present value of the worker's lifetime real taxable earnings on the date of retirement is:
where Hecinz a year of retircment,
EYEAR = year of entry into coverad employment,
REP ${ }_{i}$ annual reported earnings in year i,
$C_{i}$. consumer price index in year i, and
$r_{j}=$ annual real incerest rate in year $j$.
The percentage distribution of LTEAR for single households only appears in Table 6.5. Table 6.6 displays the percentage distribution of ILTEAR for married households.

The summary measure of lifetime earnings differs from the simple sum of annual reported earnings by the weighting of annual reported earnings by the annual real interest rate in each year. This weighting scheme was introduced to approximate the individual's lifetime income status on the date of retirement. The compounding rate was a simple historical average of the yield on U.S. government securities (low yield) and the annual

Table 6.5. Percentage distribution of LTEAR, single population only

| LTBAR | Total | Men | Women |
| :---: | :---: | :---: | :---: |
| $0-19.5$ | 13.0 | 10.9 | 14.4 |
| $19.6-41.8$ | 12.7 | 17.4 | 9.8 |
| $41.9-65.2$ | 8.5 | 7.2 | 9.3 |
| $65.3-86.2$ | 5.9 | 8.7 | 4.2 |
| $86.3-106.9$ | 7.4 | 5.8 | 8.4 |
| $107.0-129.5$ | 6.8 | 6.5 | 7.0 |
| $129.6-150.4$ | 5.1 | 2.9 | 6.5 |
| $150.5-168.8$ | 2.5 | 0.7 | 3.7 |
| $168.9-195.5$ | 4.8 | 2.9 | 6.0 |
| $195.6-217.3$ | 6.8 | 8.0 | 6.0 |
| $217.4-238.8$ | 5.4 | 5.1 | 5.6 |
| $238.9-260.7$ | 2.5 | 0.7 | 3.7 |
| $260.8-281.6$ | 4.2 | 5.1 | 3.7 |
| $281.7-302.8$ | 3.1 | 3.6 | 2.8 |
| $302.9-325.1$ | 3.7 | 5.8 | 2.3 |
| $325.2-345.6$ | 2.0 | 1.4 | 2.3 |
| $345.7-361.7$ | 1.7 | 2.2 | 1.4 |
| $361.8-388.3$ | 2.0 | 0.7 | 1.4 |
| $388.4-401.9$ | 0.1 | 1.1 | 0.5 |
| $401.9+$ |  |  |  |

atotals may not add to 100 because of rounding.
${ }^{\text {breported in thousands. }}$

Table 6.6. Parcentage diatribution of FLTEAR by household type ${ }^{\text {a }}$

| PLTEAR | Total | One <br> Earner | Tvo <br> Earner |
| ---: | ---: | ---: | ---: |
| $0-40.0$ | 9.2 | 14.0 | 3.1 |
| $40.1-80.3$ | 10.4 | 14.6 | 5.0 |
| $80.4-119.8$ | 8.9 | 10.8 | 6.5 |
| $119.9-160.4$ | 7.7 | 7.9 | 7.5 |
| $160.5-200.0$ | 7.2 | 6.3 | 8.5 |
| $200.1-241.1$ | 8.2 | 7.8 | 8.6 |
| $241.2-281.4$ | 7.4 | 7.6 | 7.2 |
| $281.5-321.9$ | 7.2 | 5.8 | 9.0 |
| $322.0-362.2$ | 8.5 | 8.3 | 8.6 |
| $362.3-402.4$ | 8.5 | 5.1 | 7.7 |
| $402.5-442.1$ | 7.6 | 1.4 | 10.4 |
| $442.2-482.3$ | 3.2 | 0.1 | 5.4 |
| $482.4-522.5$ | 2.1 | 0.0 | 3.7 |
| $522.6-562.3$ | 2.1 | 0.0 | 4.6 |
| $562.4-596.8$ | 0.7 | 0.0 | 1.5 |
| $596.9-637.9$ | 0.4 | 0.0 | 1.0 |
| $638.0-677.5$ | 0.4 | 0.0 | 1.0 |
| $677.6-712.8$ | 0.1 | 0.0 | 0.0 |
| $712.9-730.3$ |  |  |  |
| $730.4-805.2$ |  |  |  |

${ }^{\text {a }}$ Totals may not add to 100 because of rounding.
$b_{\text {Reported }}$ in thousands.
yield on corporate paper plus the rate of increase of average atock prices (high yield). The historical avarage saries was converted to real terms aince the annual reported earninge were deflated by the conaumer price index (see Appendix C, Table 13.1).

There are obvious problams with the LTEAR masoure of lifetime income. Tirst, the selection of an appropriate compounding rate or compounding series is somewhat arbitrary. (The sensitivity of the regression results to the compounding saries should be investigated in the future.) Second, LTEAR ia based on annual reported earnings to social security only; hence, it systematically excludes nonlabor earnings and labor carnings above the taxable carnings ceiling. The third problem with the LIEAR measure involves the actual aize of the annual taxable earninga reported in the file. The size of the annual taxable carnings depends on the tax base and typea of occupationa covered under the law. These policy variables depend on policy decisions and, as a resule, policy decisions influence the size of the calculated lifetime earnings meaaure. The last problem is technical in nature. Annual reported earnings for 1937 to 1950 were not reported annually; rather, the Longitudinal Exact Match File reported a 14-year sumary earnings figure. However, the file reports estimated annual quarters of coverage by year for the 1937 to 1950 time period. The year-specific estimated annual quarters of coverage were used to disaggregate the 1937-1950 sumary taxable earnings measure. The disaggregation procedure is described in Appendix F.

In spite of the aforenentionad problems with the LTEAR meacure of lifatime earninge, it is, in the reacercher's opinion, the beat meacure evailable given the information on the worker'e earninge history obteined Irow the longitudinal Eerninge Mstch File. In the context of this atudy, the most serfous shortcoming of the LTEAR measure ia the aysomatic exclusion of nonlabor arnings and earnings above the texsble maximum. The gravity of the problem ia challenged, however, by the percentege diatribution of the LTPAR shown in Tablea 6.5 and 6.6. Dut, as a afaguard, a graduated education level variable wa inciudad in the regreseion analyaia, since, generally opeaing, there is positive, although not perfect, corfelation between income and education levele.
b. Soctoeconcaic variablea (SEX, RACE, EDU) The SEX, RACE, and EDU dumay variables represent the expected value of the absolute difference in the dependent variable for each beneficiary characteriacie, ceteris paribus.

The 8EX variable wes included to monitor the effect, if any, of sex differentisis, be it longevity or employment differences, on the extent of redistribution. The dumuy variable vakes on a value of one when identifying a female. When the annuity counterfactuals reflect survivorship differentials by sex, the coefficient on SEX was expected to be positive.

The Ract varisble reflects the race of the family unit, and it was included to deteraine if race influenced the size of the redistribution component. RAct equals one for nonwhites and zero for wites. Racz was
expected to have a negative coafficient when mortality differentials by race were accounted for in the annuity counterfactual.

The $\mathbf{E D U}$ variable was included to supplement the carnings measure (LTEAR, FLTEAR) a discuseed carlier, and to account for the independent associations of education level on survivorship. Four education clasifications were used: EDU1 for persons with 0-7 yeare of aducation: EDU2 for persons with 9-11 years of education; EDU3 for high achool graduates; and EDU4 for persons with any college education. The cocfficianta on the $\mathbb{E D U}$ variablea measure the differential impact of the indicated category and the category of peraona with eight yeara of achooling (the median yeare of schooling for this age cohort). The coefficient on EDUL was expected to be poaitive without adjuating for education differentials in survivorohip, but negative if education differentials were introduced into the annuity counterfactual. Coefficients on EDU3 and EDU4 were expected to have a negative sign without adjuating for education differentials in survivorahip and may be positive after edjusting for education differentials in survivorship. The sign of the coefficient for $\mathbf{E D U Z}$ may be positive of negative. The sign reversal for the EDU3 and EDU4 was expected because education level is inversely related to mortality; hence, the annuity benefit received by persons with high education levels were lower (therefore, their rediatribution components larger), ceteris paribus, when survivorship differentials by education level were used to calculate annuity benefits. Education mortality differentials counteract the progressive features of the benefit formula.

[^25]\[

$$
\begin{equation*}
\text { RAGE = LACE }=(72-Y B E G I M 2) \tag{6.12}
\end{equation*}
$$

\]

where LAGE is the benticiary's age in 1972, and YBEGIM2 is the year the beneficiary retired. If rags equalled 62-64, then a code of one was assigned to RAGERI; if RNGE equalled 66-71, then a code of one was assigned to RAGER2; RAGE greater than 72 was coded as one for RAGER3. The comparison group for this dumy series was persons with a RAGE equal to 65; that is, beneficiaries who began receiving benefits at age 65. Previous empirical evidence suggeste that RAGERI, RACRR2, and RAGER3 would have negative coefficients.

The retirament cohort dummy veriables RCOHORT1 and RCOHORT2 measure the eignificance of the year of retirament in explaining the variation in the size of the tranafer component. Parsons retiring between 1962 and 1964 were in the earlieat cohort labelled RCOHORTI. Persone retiring betwean 1965 and 1968 were in the middle cohort labelled RCOHORT2. The ratirament cohorts dated after 1968 were uaed as the control group. A poaitive aign was expected on coofficienta for RCOHORTI and RCOHORT2. A poaitive eign wes expected because earlier cohorts bencifted from the relative immaturity of the program, which made posaible extremely low tax ratea and frequent increases in benefit levels.

## A. Descriptive Statistics

## 1. The bencfit incidance of the 1972 old-are ingurance progran, all houscholds

Table 7.1 displays the eatimated benefit incidence of the OAI program in 1972 for the 1962-1972 retirament cohorte besed on type-6 annuity counterfectual. In the aggregate, 7.09 aillion dollars in OAI bencfite were paid to retired beneficiariee in this subeample; approximately 89 percent of the benefite received nere trinsfors from the current working generation. The $\mathbf{8 6 . 3}$ afllion in intergenerational transfers were not, however, evenly distributed scross the income groups. Contrary to the "social adequacy" objective, the low-1ncome groups (\$03,000 ) represented 15 percent of the sample and they received ten percent of the intergenerational transfers, whereas the middle-income groups ( $\$ 3,001-8,000$ ) received 57 percent of the transfers but represented 53 percent of the sample. The high-income groups ( $\mathbf{8 8 , 0 0 1}$ plus) received 33 percent of the transfers, but included 32 percent of the sample (see Appendix E, Table 15.1 for the aggragate figures associated with Table 7.1). In absolute terms, the middle-income groups received the largest share of the intergenerational transfers.

The extent of the intracohort redistribution may be inferred from the absolute and relative size of the redistribution coaponent across faaily income classes. Column 3 in Table 7.1 indicates that all income groups have received more than their "money's worth" from the social

Table 7.1. Benefit incidence of the 1972 old-age insurance progrem

| Total family income in 1972 ${ }^{\text {² }}$ | $\begin{gathered} \text { (1) } \\ \text { OAI } \\ \text { benefit } \\ \text { level in } \\ 1972 \\ \text { (mean) } \end{gathered}$ | (2) <br> Tуре-6 actuarially fair benefic. carninge adjusted (mean) ${ }^{\text {b }}$ | Redistribution component |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (3) <br> Absolute difference $(1)-(2)$ | (4) <br> Percentage $\frac{(1)-\left(\frac{\text { diffence }}{}\right.}{(1)} \times 100$ | Household population distribution (in percents) |
| \$ 0-1,000 | 698 | 17 | 681 | 97.6 | 1 |
| 1,001-1,500 | 1,065 | 76 | 989 | 92.9 | 1 |
| 1,501-2,000 | 1,369 | 119 | 1.250 | 91.3 | 3 |
| 2,001-2,500 | 1,618 | 141 | 1,477 | 91.3 | 5 |
| 2,501-3,000 | 1,847 | 173 | 1,674 | 90.6 | 5 |
| 3,001-3,500 | 2,071 | 220 | 1.851 | 89.4 | 6 |
| 3,501-4,000 | 2,275 | 258 | 2,017 | 88.7 | 8 |
| 4,001-5,000 | 2,499 | 287 | 2,212 | 88.5 | 13 |
| 5,001-6,000 | 2,571 | 312 | 2,259 | 87.9 | 11 |
| 6,001-8,000 | 2,517 | 312 | 2,205 | 87.6 | 15 |
| $8,001-10,000$ | 2,381 | 281 | 2,100 | 88.2 | 9 |
| 10,001-20,000 | 2,271 | 260 | 2,031 | 89.4 | 18 |
| 20,001+ | 2,425 | 260 | 2,165 | 89.3 | 5 |
| Total | \$7.09 ${ }^{\text {c }}$ | \$.796 ${ }^{\text {c }}$ | \$6.294 ${ }^{\text {c }}$ | 88.8 | 3,106 |
| Nean | \$2,283 | \$256 | \$2,027 | 88.8 |  |

[^26]security program, since for each income class, the mean OAI bencfic level (column 1) is larger than the actuarially fair banefit level (column 2). However, the largest relative gaine were realized by low-income families. On average, the lowest incom family group received $\$ 698$ annually from OAI, of which \$681, or 97.6 percent, was a reault of the "social adequacy" feature of the program. Column 4 show that the redistribution component, as aprentage of the mean OAI bancif level in 1972, generally decreased as the fanily income level in 1972 increased. This gencral pattern would seam to suggest that the progressive bencit formula and minimu benclit provisions effectively redistributed income In favor of lower income houscholds; that is, the program in 1972 was progressive.

There are seversl approaches that could be used to assass the oversil progressivity of the OAI program. One approsch is based on endpoint comparisons. That is, the percentage of redistribution for the lowest income group is compared to the comparable masure for the highest incone group. The relatively gall low-to-high differential, 97.6 to 89.3 in colum 4, suggeste that the redistribution formula in 1972 mas "alldly" progressive. Another approach evaluates progressivity in terms of a steadily falling percentage of redistribution as the incone level increases. It is interesting to note that the redistribution measure in columa 4 of Table 7.1 falls steadily as income rises (with the exception of $\$ 2,001-2,500$ ) until the $38,001-10,000$ incose group, after which the percentage of redistribution generally increases. The falling pattern for mine out of 13 incone groups would, again, suggest that the program
was "generally" progresaive. An alternative approach is to evaluate the program's overall progressivity by comparing the highest income group's percentage of redistribution to the percentage of redistribution for all other family income categorics. A "truly" progressive program would have a stesdily falling, positive differential as income increases, whereas a "truly" regressive program would have a steadily falling, negative differential as income increases. This type of comparison for the results presented in column 4 is displayed in Yigure 7.1 , curve 1. Chearly, the OAI program demonatrated "truly" progressive features at income levels less than $\mathbf{3 3 , 5 0 1}$, but it displayed regressive, although not "truly" regressive, features at income levels greater than $\mathbf{\$ 3 , 5 0 0}$ but less than $\$ 10,001$.

The different approaches used to assess progressivity can lead to different program assessments from the same descriptive statistics. The "and-point" approach indicates that the OAI program in 1972 was "mildiy" progressive, whereas the "patterned" approach shows it to be "generally" progressive throughout the income classifications. However, the "high-income-group-comparison" approach showe that the program exhibited classic progressive features for low-income groups only, and it exhibited strong regressive features for all other income groups except the penultinate income group. The different approaches when taken separately can result in misleading and "over-optimiscic" program performance assessment, but, when taken together, the different approaches render a complete depiction of the program's overall performance. That is, the OAI program in 1972 was "mildly" and "generally" progressive across


Figure 7.1. Progressivity of the OAI program using socioeconomic-adjusted annuicy benefits controlling for earnings test and indexing
income groups, but it also exhibited strong regrassive feetures, resulting in lower reletive raturne to middle-income beneficiaries. Tharefore, the intracohort transfer mechanism operated to pay the highest reletive raturn to the low-incoma beneficiarias and the lowest relative returns to middle-income beneficiarias, which, in spite of being "mildiy" and "generally" progrescive, is inconaistent with the progran's overall objective.

While the bencfic formula and the minimum benafit proviaions atrongly influanced the pattern of the redistribution componants, there are other confounding program fatures that exert an influence on the redistribution design, such as the carnings test, cost-of-living adjustmente, and life contingancies. Table 7.2 isolates the effects of the carninge teat and cost-of-living featuras on the percontage of rediatribution acroas income groups. The life contingency influence is examined in Table 7.3.

The cerninge-teat effect is presented in column 3 of Table 7.2. ${ }^{1}$ Column 3 measures the change in the percentage of radistribution when the earnings test is introduced into the program's design. Note that the earnings test does not affect the three loweat income groupa, but it becomes an increasingly important influence on the estimated percentage of redistribution as family income level increases. The earnings-test effect has its greatest impact on high-income families ( $\$ 6,000+$ ), which

[^27]Table 7.2. Effect of the oarninge test and cost-of-living indexing on the distribution of redistribution (expressed in percentage terms) for socioecononic-adjusted annuity benefits ${ }^{\text {a }}$

| Total fanily income in $1972^{\text {C }}$ | Percentage of redistribution ${ }^{\text {b }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) <br> Indexed and caraings adjusted | (2) <br> Indexed Mithout earniags adjustement | (3) <br> Change in rediatribution (1) $-(2)$ | (4) <br> Monindexed and earnings adj usted | (5) <br> Chasge in redistribution (1)-(4) |
| \$ 0-1,000 | 97.6 | 97.6 | 0.0 | 97.3 | 0.3 |
| 1,001-1.500 | 92.9 | 92.9 | 0.0 | 92.5 | 0.4 |
| 1,501-2,000 | 91.3 | 91.3 | 0.0 | 90.4 | 0.9 |
| 2,001-2,500 | 91.3 | 91.1 | 0.2 | 90.4 | 0.9 |
| 2,501-3,000 | 90.6 | 90.3 | 0.3 | 89.5 | 1.1 |
| 3,001-3,500 | 89.4 | 89.1 | 0.3 | 88.2 | 1.2 |
| 3,501-4,000 | 88.7 | 88.4 | 0.3 | 87.4 | 1.3 |
| 4,001-5,000 | 88.5 | 88.2 | 0.3 | 87.0 | 1.5 |
| 5,001-6,000 | 87.9 | 87.5 | 0.4 | 86.3 | 1.6 |
| 6,001-8,000 | 87.6 | 86.8 | 0.8 | 85.8 | 1.8 |
| 8,001-10,000 | 88.2 | 87.1 | 1.1 | 86.3 | 1.9 |
| 10,001-20,000 | 89.4 | 87.6 | 1.8 | 87.8 | 1.6 |
| 20,001t | 89.3 | 87.7 | 1.6 | 87.6 | 1.7 |
| Mean | 88.8 | 88.0 | 0.8 | 87.2 | 1.6 |

All annuity benefits were calculated using socioecononic-adjusted survivorship probabilities.
${ }^{6}$ Percentage of redistribution was calculated by taking the difference between the mean oal benefit level in 1972 and the mean actuarially fair benefit level for an income class divided by the mean OAI benefit level in 1972.

CTotal family income includes onl benefits received in 1972.

Table 7.3. Changes in the percantage of radietribution under different curvivorship probebility asaumptions

| $\begin{gathered} \text { Total family } \\ \text { Income in } \\ 1972 \end{gathered}$ | Eernings tast edjuated |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Annuity-type, indexad |  |  | (4) <br> Change in percentage of redistribution $(2)-(1)$ <br> (3)-(1) |  |
|  | $\stackrel{(1)}{\text { Type-4 }}$ | (2) Type-5² | $\underset{\text { Type-6 }}{\text { (3) }}$ |  |  |
| \$ 0-1,000 | 97.7 | 97.8 | 97.6 | 0.1 | -0.1 |
| 1,001-1,500 | 93.9 | 94.1 | 92.9 | 0.2 | -1.0 |
| 1,501-2,000 | 91.8 | 92.0 | 91.3 | 0.2 | -0.5 |
| 2,001-2,500 | 91.3 | 91.6 | 91.3 | 0.3 | 0.0 |
| 2,501-3,000 | 90.6 | 91.0 | 90.6 | 0.4 | 0.0 |
| 3,001-3,500 | 89.4 | 89.7 | 89.4 | 0.3 | 0.0 |
| 3,501-4,000 | 88.6 | 88.9 | 88.7 | 0.3 | 0.1 |
| 4,001-5,000 | 88.2 | 88.6 | 88.5 | 0.4 | 0.3 |
| 5,001-6,000 | 87.5 | 87.9 | 87.9 | 0.4 | 0.4 |
| 6,001-8,000 | 87.1 | 87.5 | 87.6 | 0.4 | 0.5 |
| 8,001-10,000 | 87.7 | 88.1 | 88.2 | 0.4 | 0.5 |
| 10,001-20,000 | 88.9 | 89.3 | 89.4 | 0.4 | 0.5 |
| 20,001+ | 88.6 | 88.9 | 89.3 | 0.3 | 0.7 |
| Mean | 88.5 | 88.8 | 88.8 | 0.3 | 0.3 |

[^28]places upward presaure on their sumary redistribution measurea because their annuity bencfits are reduced by the carninge ceat formula. The earninga-test effect on the "high-incose-group-comparison" approach to progreasivity acsessment can be ceen by comparing curve 2 to curve 1 in Figure 7.1. In the sbsence of the earninge teat, the program exhibited "claseic" progressive features at income levele less than \$5,001 and "claesic" regreseive features at income levels in excess of $\mathbf{\$ 5 , 0 0 0 .}$. In concluaion, it has been shown that the introduction of the earninge teat shifte the perforaance curve downard, intercalating additional regreasive features into the program'a modus oparandi.

Coluan 5 in Table 7.2 isolates the change in the rediatribution meacure as reault of introducing price indexing into the progran's design. It is interesting to note that the absolute aize of the redistribution measure is increased for all income groups when inflation protection is included in the annuity counterfactual, ceteris paribus. This reault is expected, at least initially, since the indexed annuity benefit is smaller than an unindexed annuity benefic. ${ }^{1}$ This is because the annuitant is insured againat the risk of economic insecurity and inflation over an uncertain retirement period.

Although all income groups realized extra redistribution per dollar of OAI benefit when indexing was included in the progran, the greatest relative gains were realized by higher income groups because of their longer life expectancies on average. Price indexing, when taken alone,

[^29]did not alter the progresaivity concluaions, but it did generally reduce the leval of prograssivity at income levela less than $\mathbf{3 3 , 5 0 1}$ and slighty increased regresaivity at income levals between \$3,500 and \$5,000 (see Pigure 7.1, curves 3 and 1).

The sanaitivity of the progressivity conclusions to the survivorship probability assumption ts axamined in Table 7.3. The benefit incidence for type-4, type-5, and type-6 counterfactuels are presented in column 1, 2, and 3, respectively. Column 4 ahowe the change in the percentage of redistribution if the program adopted a sex-race-age discriminating policy as opposed to strictly age discriminating policy. The adoption of a sex-race-age discriainating policy reaulted in an average gain of 0.3 cents of redistribution per dollar of oal benefit. However, the adoption of a sex-race-age-education-income-marital atatua discriainating policy in place of an ageonly policy (column 5) resulted In a marginal accretion in rediatribution for households with income levels in excesa of $\mathbf{3 3 , 5 0 0}$, where the anginal gein generally increased as fanily income increased. The lowest income groupg ( $\mathbf{5 0 - 2 , 0 0 0 )}$, on the other hand, realized a net loss in redistribution per dollar of OAI benefit. The marginal gain-loss observation is explained by the effect of income and education levels on longevity. That is, annuity bencfits are higher (lower) for low (high) income earners, ceteris paribus, because the probability of survival is positively related to income and education. Contrary to Aaron's study (1974), the effect of socioeconomic differentials in survivorship does not reverse the direction of redistribution, but, rather, "dampens" the extent of redistribution at the low
and of the income scale and "alevatea" the axtent of redistribution at the high and of the income acale. The program's ovarall progressivity Wes virtually inveriant to the use of gender-merged or sex-race-distinct survivorship rates (see curves 2 and 3 in Fisure 7.2). Howevar, the use of socioeconomic-adjucted survivorship probabilities did aument the racresaive latiuras and attontuate the progressive foatures relative to the "less" discriminatins probabilitias.

Basic sumary statistics for counterfectuels one through six are presented in Tables 7.4 and 7.5. The totel and mean annuity banefit received in 1972 and the mean percentage of rediatribution, controlling for survivorship aseumption, indaxing, and asmings test, are prasented in Table 7.4. The "end-point" sumary statistice for all countarfactuale are shown in Table 7.5. It is interesting to note that the lergest progrescivity gap (12.2) resulted from progran charscterised by ageonly discriainetion without an arnings panclty test or faflation protection. The mallest progressivity sep (8.3) resulced from program that provided inflation protection, garnished a fraction of benefits for excessive post-retirement earnings, and tapered benefits to reflact sociocconomic differentisls in mortality.
2. The effect of differenticl life expectancies of males and femalea on the benefit incidence for fully-incured beneficiaries
a. Single beneficiaries Tables 7.6 and 7.7 show the effect of differential life expectancies of females and males on the benefit incidence for fully-insured single beneficiaries. Typem annuity benefits were calculated employing gender-merged survivorship rates,


Figure 7.2. Progressivity of the onl progran using different survival probability assumptions

Table 7.4. Total annuity benefic received in 1972 controlifis for survivorship assumption, indexing, and earnings test

| Annuity type | Without earniags test |  |  | With earnings test |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total annulty benefics | Nean annuity benceit level | Hean ${ }^{\text {a }}$ percentage of redistribution | Total annuity benefics | Mean annuity benefit level | Meana <br> percentage of redistribution |
| Unindexed |  |  |  |  |  |  |
| Type-1 ${ }^{\text {b }}$ | \$992,000 | 319.00 | 86.0 | \$925,000 | 298.00 | 87.0 |
| Type-2 ${ }^{\text {c }}$ | 971,000 | 313.00 | 86.3 | 905,000 | 291.00 | 87.3 |
| Type-3 ${ }^{\text {d }}$ | 972,000 | 313.00 | 86.3 | 906,000 | 292.00 | 87.2 |
| Indexed |  |  |  |  |  |  |
| Type $4^{6}$ b | 877,000 | 282.00 | 87.6 | 820,000 | 264.00 | 88.5 |
| Type-5 ${ }^{\text {c }}$ | 850,000 | 274.00 | 88.0 | 794,000 | 256.00 | 88.8 |
| Type-6 ${ }^{\text {d }}$ | 852,000 | 274.00 | 88.0 | 796,000 | 256.00 | 88.8 |

atotal benefits minus total annuity benefits divided by cotal benefics.
balculations based on gender-merged survivor probabilicies.
${ }^{C}$ Calculations based on sex-race-distinct survivor probabilicies.
dCalculations based on socioeconomic-adjusted survivor probabilicies.

Table 7.5. Percentage point gap between pooreat and richest income groups

| Survivor probability assumption | Uithout earainge teat |  |  |  | With earninge teat |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unindexed |  | Indexed |  | Uaindexed |  | Indexed |  |
|  | Poorest to richeat | Second poorest to cicheat | $\begin{aligned} & \text { Poorest } \\ & \text { to } \\ & \text { richest } \end{aligned}$ | Second poorest to richest | Poorest to richear | Second poorest to richest | Poorest to richear | Second poorest to richest |
| Cender-merged | 12.2 | 7.9 | 10.7 | 6.9 | 10.3 | 6.0 | 9.1 | 5.3 |
| Sex-race-dietinct | 12.1 | 7.9 | 10.4 | 6.7 | 10.2 | 6.0 | 8.9 | 5.2 |
| Sociosconomic | 11.6 | 6.8 | 9.9 | 5.2 | 9.7 | 4.9 | 8.3 | 3.6 |

Table 7.6. Effect of differential life expectancies of feanles on benefit incidence for single workers controlling for total OAI contributions ${ }^{\text {a }}$

| Total oni ${ }^{\text {e }}$ contributions in 1972 dollars | $\xrightarrow[\text { Type-4 }]{\text { (1) }}$ <br> actuarially fair benefit | (2) <br> Type-5 ${ }^{c}$ <br> actu- <br> arially <br> fair benefit | (3) <br> Benefit differencial (2)-(1) | (4) <br> Type-5 <br> actu- <br> artally <br> fair <br> benefit | (5) <br> Type-6 <br> actu- <br> artally <br> fair <br> benefit | (6) <br> Benefit differenctal (5) $-(4)$ | (7) <br> Overall benefit differential (5)-(1) | Population |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ 500 K | 22 | 19 | -3 | 19 | 21 | 2 | -1 | 17 |
| 501-1,000 | 62 | 54 | -8 | 54 | 62 | 8 | 0 | 15 |
| 1,001-1,500 | 94 | 81 | -13 | 81 | 87 | 6 | -7 | 13 |
| 1,501-2,000 | 142 | 122 | -20 | 122 | 130 | 8 | -12 | 12 |
| 2,001-2,500 | 183 | 158 | -25 | 158 | 173 | 15 | -10 | 15 |
| 2,501-3,000 | 211 | 182 | -29 | 182 | 198 | 16 | -13 | 15 |
| 3,001-3,500 | 229 | 197 | -32 | 197 | 216 | 19 | -13 | 12 |
| 3,501-4,000 | 293 | 252 | -41 | 252 | 277 | 25 | -16 | 13 |
| 4,001-4,500 | 350 | 301 | -49 | 301 | 320 | 19 | -30 | 17 |
| 4,501-5,000 | 402 | 346 | -56 | 346 | 378 | 32 | -24 | 7 |
| 5,001-6,000 | 410 | 351 | -59 | 351 | 364 | 13 | -46 | 36 |
| 6,001-7,000 | 492 | 421 | -71 | 421 | 456 | 35 | -36 | 12 |
| 7,001-8,000 | 544 | 466 | -78 | 466 | 506 | 40 | -38 | 9 |
| 8,001-9,000 | 767 | 660 | -107 | 660 | 697 | 37 | -70 | 6 |
| 9,001+ | 626 | 537 | -89 | 537 | 562 | 25 | -64 | 8 |
| Total | \$59,764 | \$51,355 | -58,409 | \$51,355 | \$54,853 | 53,498 | -54.911 | 207 |

Fremale beneficiaries are defined as single fomale retirees who are fully insured and collecting primary benefits in 1972.
${ }^{\text {b }}$ Type-h annuity estimates are based on gender-merged survivor probabilities, unadjusted.
CType-S annuity estimates are based on sex-race-distinct survivor probabilities, unadjusted.
${ }^{\text {dType-6 annuity estimates are based on socioecononic adjusted survivor probabilities, }}$ unadjusted.

CThe 1972 dollar value of OAI contributions paid by the worker over her work history. The OAI contributions were accumulated assuming that there mas 100 percent backward shifting of the OAI tax rate and compounded at U.S. government bond interest rates.

Table 7.7. Effect of differential life expectancies of males on benefit incidence for aingle workers controlling for total OAI contributions ${ }^{\text {a }}$

| ```Total OAI  contributions In }197 dollars``` | $\begin{aligned} & \text { (1) } \\ & \text { Typeab } \\ & \text { actu- } \\ & \text { arially } \\ & \text { fair } \\ & \text { benefit } \end{aligned}$ | $\begin{aligned} & \text { (2) } \\ & \text { Type } 5^{c} \\ & \text { actu- } \\ & \text { arially } \\ & \text { fair } \\ & \text { benefit } \end{aligned}$ | (3) <br> Benefit differencial (2) $-(1)$ | $\begin{aligned} & \text { (4) } \\ & \text { mpe-5 } \\ & \text { actu- } \\ & \text { actally } \\ & \text { fatr } \\ & \text { bemefit } \end{aligned}$ | $\begin{aligned} & \text { (5) } \\ & \text { Type-6 } \\ & \text { actu- } \\ & \text { arially } \\ & \text { falr } \\ & \text { bemefic } \end{aligned}$ | (6) <br> Benefit differential (5)-(4) | (7) <br> Overall benefic differential (5) $-(1)$ | Population |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ 500< | 23 | 25 | 2 | 25 | 29 | 4 | 6 | 10 |
| 501-1,000 | 61 | 66 | 5 | 66 | 78 | 12 | 17 | 10 |
| 1,001-1,500 | 91 | 99 | 8 | 99 | 119 | 20 | 28 | 17 |
| 1,501-2,000 | 82 | 88 | 6 | 88 | 104 | 16 | 22 | 4 |
| 2,001-2,500 | 172 | 187 | 15 | 187 | 240 | 53 | 68 | 6 |
| 2,501-3,000 | 215 | 233 | 18 | 233 | 287 | 54 | 72 | 7 |
| 3,001-3,500 | 263 | 284 | 21 | 284 | 347 | 63 | 84 | 11 |
| 3,501-4,000 | 302 | 326 | 24 | 326 | 389 | 63 | 87 | 5 |
| 4,001-4,500 | 313 | 337 | 24 | 337 | 401 | 64 | 88 | 7 |
| 4,501-5,000 | 369 | 399 | 30 | 399 | 484 | 85 | 115 | 7 |
| 5,001-6,000 | 426 | 461 | 35 | 461 | 556 | 95 | 130 | 11 |
| 6,001-7,000 | 469 | 505 | 36 | 505 | 595 | 90 | 126 | 10 |
| 7,001-8,000 | 521 | 561 | 40 | 561 | 664 | 103 | 143 | 11 |
| 8,001-9,000 | 677 | 731 | 54 | 731 | 857 | 126 | 180 | 4 |
| 9,001+ | 827 | 899 | 72 | 899 | 1.100 | 201 | 273 | 6 |
| Tocal | \$37. 157 | 840, 131 | \$2.974 | S40, 131 | 848.207 | \$8.076 | \$11,050 | 126 |

${ }^{\text {a male beneficiaries are defined as single male retirees who are fully insured and collecting }}$ primary benofics in 1972.
${ }^{b}$ Type-h annulty estimater are based on gender-merged survivor probabilities, unadjusted.
cType-5 annuity eatimatea are based on sex-race-distinct survivor probabilities, unadjusted.
${ }^{\text {d}}$ Type-6 annuity estimates are based on sociceconoaic adjusted survivor probabilities,
unadjusted.
${ }^{\text {C The }} 1972$ dollar value of OAI contributions paid by the worker over his work history. The OAI contributions were accumulated assuming that there was 100 percent backward shifting of the oal tax rate and compounded at U.S. government bond interest rates.
whereas type-5 benefite were calculated using sex-race-distinct rates. All contribution clasees, independent of sex and annuity type, received poaitive tranafers from the OAI program, l.e., the mean OAI benefit level exceeded the annuity-type benefit level. Bowevar, the absolute aize of the transfer depende on sex and annuity type. Mele bencficiaries received smaller annuity benefita when gender-merged rates were employed relative to a prosram uaing sex-diatinct rates, ceteris paribus. The observed relationship is expected because sex-distinct ratne edjuat benefit levels upward for the reletively ahorter life expectancies of men, as a group, vis-fovis wamen, as a group. Contrariwise, femele beneficiaries received larger annuity banefits (hence, amaller redistribution components) when gender-merged rates were used relative to sex-distinct rates. Again, this is an axpected result since sex-distinct rates adjuat bencfit levels downward for the relatively longer life expectancies of women, as agroup.

The annuity benefit differentials for female and male beneficiaries are shom in colum 3 in Tables 7.6 and 7.7, respectively. The negative differentials for feme bencficiaries and the posicive differencials for male bencficiaries indicate that single momen, as a group, are made differentially better off in a retircment progran that does not sex discriminate benefit levels to account for the momen's longer life expectancies relative to men's, as a group. Single female beneficiaries, as a group, received annuity benefits that mere approximately 16 percent higher in a gender-merged retirement system relative to a sex-race discriminating system, whereas male counterparts, as a group, received
benefits that were approximately seven percent lower. Hence, in a sexneutral retirament progran, single male beneficiaries received lower benefit levels relative to a eax diecriminating program, wich compensated for the alighty higher benefit levels paid to single female bencficiaries.

A similar comparison can be made between type-5 and type-6 annuity counterfectuals. Column 6 in Tables 7.6 and 7.7 shows that single persone, in general, received marginal aceretiona in their annuity benefits when the effect of marital status, education, and income levels are incorporated into their life contingencies. These "other" socioeconomic variablea affecting longevity tand to offeet the effect of the sex variable for single women and reinforce the effect of the sex variable for single men. The overall benefit differential resulting from the incorporation of sex, rece, marital atatue, education, and income variables into annuity benefit calculations is presented in column 7 on Tables 7.6 and 7.7. single fomale beneficiaries received annuity benefits that were approximately eight percent lower in a sociocconomicdiscriminating progran relative to an age-only discriminating program, whereas aingle male beneficiaries received annuity benefits that ware approximately 30 percent higher.
b. Married beneficiaries Tables 7.8 and 7.9 show the effect of differential life expectancies of females and males on the benefit incidence for fully-insured married beneficiaries. The crosssubsidization by sex found in the case for single beneficiaries was not observed when the annuity benefit comparisons mere made across married

Table 7.8. Effect of differential life expectancies of females on benefit incidence for married workers controlling for total MI contributions, females oaly

| Total OAI contributions in 1972 , dollars | (1) <br> Type-4 actuarially fair benefit ${ }^{c}$ | (2) <br> Type-5 <br> actu- <br> arially <br> fair <br> benefit ${ }^{d}$ | (3) <br> Benefit differential (2)-(1) | (4) <br> Type-5 <br> actu- <br> arially <br> fair <br> benefit | (5) <br> Type-6 <br> actu- <br> arially <br> fair <br> bemefite ${ }^{\text {e }}$ | (6) <br> Benefit differential (5)-(4) | (7) <br> Overall benefit differential (5)-(1) | Population |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ 500< | 21 | 20 | -1 | 20 | 20 | 0 | -1 | 132 |
| 501-1,000 | 50 | 48 | -2 | 48 | 48 | 0 | -2 | 130 |
| 1,001-1,500 | 83 | 80 | -3 | 80 | 80 | 0 | -3 | 97 |
| 1,501-2,000 | 110 | 107 | -3 | 107 | 105 | -2 | -5 | 89 |
| 2,001-2,500 | 145 | 141 | -4 | 141 | 140 | -1 | -5 | 82 |
| 2,501-3,000 | 172 | 166 | -6 | 166 | 165 | -1 | -7 | 59 |
| 3,001-3,500 | 204 | 198 | -6 | 198 | 194 | -4 | -10 | 51 |
| 3,501-4,000 | 242 | 234 | -8 | 234 | 231 | -3 | -11 | 45 |
| 4,001-4,500 | 275 | 268 | -7 | 268 | 263 | -5 | -12 | 41 |
| 4,501-5,000 | 341 | 329 | -12 | 329 | 324 | -5 | -17 | 23 |
| 5,001-6,000 | 358 | 346 | -12 | 346 | 341 | -5 | -17 | 40 |
| 6,001-7,000 | 360 | 348 | -12 | 348 | 338 | -10 | -22 | 26 |
| 7,001-8,000 | 452 | 441 | -11 | 461 | 435 | -6 | -17 | 17 |
| 8,001-9,000 | 449 | 436 | -13 | 436 | 426 | -10 | -23 | 10 |
| 9,001* | 479 | 458 | -21 | 458 | 461 | -17 | -38 | 5 |
| Total | \$127.919 | 6123,835 | -54,084 | \$123,835 | \$122,094 | - 51.741 | -\$5.825 | 847 |

${ }^{\text {a }}$ Fomale beneficiaries are defined as married female retirees who are fully insured and collectins primary benefics in 1972.
bThe 1972 dollar value of oal contributions paid by the worker over her work history. The oAI contributiona were accumulated assuming that there mas 100 percent backward shifting of the OAI tax rate and compounded at U.S. sovernment bond intereat rates.
${ }^{\text {CType-4 }}$ annuity estimatos are based on sender-merged survivor probabilities, unadjusted.
${ }^{\text {d Type-5 annuity estimates are based on sex-race-distinct survivor probabilities, uaadjusted. }}$
eType-6 annuity estimates are based on socioecononic adjusted survivor probabilities, unadjusted.

Table 7.9. Effect of differential life expectancies of males on benefit incidence for married workers controllins for total OAI contributions, males only

| ```Total OAI contributions in }197 dollarse,b``` | (1) <br> Type-4 actuarially fair benefit ${ }^{c}$ | (2) <br> Type-5 actuarially fair bencfit ${ }^{d}$ | (3) <br> Bencfit differ ential (2)-(1) | $\begin{aligned} & \text { (4) } \\ & \text { Type-5 } \\ & \text { actu- } \\ & \text { arially } \\ & \text { fair } \\ & \text { bencfic } \end{aligned}$ | (5) <br> Type-6 actuarially fair beacfit ${ }^{\text {© }}$ | (6) <br> Benefit differ eatial $(5)-(4)$ | (7) <br> Overall benefit differ ential (5)-(1) | Population |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ $500<$ | 20 | 19 | - | 19 | 18 | -1 | -2 | 104 |
| 501-1,000 | 46 | 45 | -1 | 45 | 45 | 0 | -1 | 156 |
| 1,001-1,500 | 78 | 75 | -3 | 75 | 75 | 0 | -3 | 134 |
| 1,501-2,000 | 109 | 106 | -3 | 106 | 105 | -1 | -4 | 133 |
| 2,001-2,500 | 130 | 126 | -4 | 126 | 125 | -1 | -5 | 129 |
| 2,501-3,000 | 173 | 168 | -5 | 168 | 166 | -2 | -7 | 138 |
| 3,001-3,500 | 209 | 203 | -6 | 203 | 200 | -3 | -9 | 125 |
| 3,501-4,000 | 234 | 227 | -7 | 227 | 226 | -1 | -8 | 143 |
| 4,001-4,500 | 264 | 256 | -8 | 256 | 254 | -2 | -10 | 133 |
| 4,501-5,000 | 289 | 280 | -9 | 280 | 277 | -3 | -12 | 131 |
| 5,001-6,000 | 330 | 321 | -9 | 321 | 318 | -3 | -12 | 229 |
| 6,001-7,000 | 406 | 395 | -11 | 395 | 389 | -6 | -17 | 214 |
| 7,001-8,000 | 433 | 421 | -12 | 421 | 416 | -5 | -17 | 171 |
| 8,001-9,000 | 478 | 465 | -13 | 465 | 460 | -5 | -18 | 176 |
| 9,001+ | 483 | 469 | -14 | 469 | 462 | -7 | -21 | 247 |
| Total | \$647.180 | 8629,418 | $-\$ 17,762$ | \$629,418 | 8621,542 | -\$7.876 | -\$25,638 | 2,363 |

${ }^{\text {a Male beneficiaries are defined as married male retirees tho are fully insured and collecting }}$ primary benefite in 1972.
${ }^{b}$ The 1972 dollar value of OAL contributions paid by the worker over his work history. The OAI contributions vere accumulated assuming that there mas 100 percent backward shifting of the oal tax rate and compounded at U.S. sovernment bond interest rates.
${ }^{\text {CType-4 annuity estimates are based on gender-merged survivor probabilities, unadjusted. }}$
dType-5 annuity estimates are based on sex-race-distinct survivor probabilities, unadjusted.
eType-6 annuity estimater are based on sociooconomic adjusted survivor probabilities, unadjusted.
persons. Actuarially fair benefit levela for married persons were approximately three percent higher, independent of the sex of the primary annuitant, in a retirement aystem that did not sex diacriminate relative to a sex discriminating program (see column 3 of Tablas 7.8 and 7.9). First, it is interesting to note that both the male and female received annuity benefits that were three percent higher in a cexneutral retiremant program. Within a married houschold, the effects of sex differantiala are neutralized because the joint-and-two-thirds annut ty insurea the mele and fomale meabera of the couple. The absolute size of the annutity benefit received is invariant to the sex of the annuttant who sctually purchases the annuity in aither program type. second, the sexneutral blas in favor of ancried persons, a a group, is a result of the joint-and-two-thirds annuity, which insurea the life of the ahorter-lived (on average) asle, the longer-lived famale, and the longeat-lived survivor, who is typically the female. The surviving wife will, in a sex-neutral aystem, receive artificially high bencfit levels for the duration of widowhood. The relatively higher bencfic levels for married households in a sex-neutral actuarially fair retirement progran are financed priaarily by single, male beneficiaries who receive smaller annuity benefits because of the assumption of identical life contingencies for males and females.

The effect of incorporating "other" socioeconomic variables can be seen in column 6 of Tables 7.8 and 7.9. Rducation, income, and marital status effects tend to further reduce the size of the annuity benefit received by married persons. Specifically, annuity benefits are
approximately 1.3 percent lower in a sociocconowic discriminating program relative to a sex-race discriminating prograw. Again, this is expected since married persons tend to have a longer life expectancy relative to nonmarried counterparts. The overall benefit differential is represented in column 7 on Tables 7.8 and 7.9. Generslly speaking, married persons, independent of sex, received benefits that were approximately four percent lower in a sociocconomic discriminating program relative to an age-only discriminating program.

## 3. The effect of retirement year on the benefit incidence of single workers only

The effect of retirement year on the percentage of redistribution is shown in Table 7.10. The retircment year is divided into three categories: 1962-1965, 1966-1969, and 1970-1972. The results are shown for type-3 and type-6 annuity counterfactuals, and displayed by total family income claasifications. Except in a faw cases (notably when the cell size is amall), the porcentage of redistribution falls as the retirement year increases, holding family income constant. Also, the percentage of redistribution is quite stable for the lowest income group, which is consistent with the minimum bencfit provision. The generally observed inverse relationship between the percentage of redistribution and the date of retirement supports the findings of Parsons and Hunro (1977), Freiden et al. (1976), and Burkhauser and Warlick (1981). The general decline in the redistribution measure reflects the maturing of the program.

Table 7.10. Effect of reticement year on benefit incidence for single workers

| Total fanily income in 1972 | Type-3, uniodexed ${ }^{\text {a }}$ |  |  | Type-6. indened ${ }^{\text {a }}$ |  |  | Population |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Redistribution component ${ }^{\text {b }}$ |  |  | Rediatribution component |  |  |  |  |  |
|  | $\begin{aligned} & \text { 1962- } \\ & 1965 \end{aligned}$ | $\begin{aligned} & \text { 1966= } \\ & 1969 \end{aligned}$ | $\begin{aligned} & 1970- \\ & 1972 \end{aligned}$ | $\begin{aligned} & 1962- \\ & 1965 \end{aligned}$ | $\begin{aligned} & 1966- \\ & 1969 \end{aligned}$ | $\begin{aligned} & 1970- \\ & 1972 \end{aligned}$ | $\begin{aligned} & 1962= \\ & 1965 \end{aligned}$ | $\begin{aligned} & 1966- \\ & 1969 \end{aligned}$ | $\begin{aligned} & 1970- \\ & 1972 \end{aligned}$ |
| \$ 500-1,000 | 97 | 98 | 95 | 97 | 98 | 96 | 1 | 3 | 1 |
| 1,001-1,500 | 97 | 93 | 76 | 97 | 93 | 83 | 7 | 8 | 6 |
| 1,501-2,000 | 89 | 84 | 78 | 88 | 85 | 79 | 6 | 9 | 5 |
| 2,001-2,500 | 88 | 84 | 75 | 87 | 85 | 79 | 18 | 15 | 7 |
| 2,501-3,000 | 89 | 82 | 79 | 89 | 83 | 82 | 13 | 10 | 9 |
| 3,001-3,500 | 87 | 81 | 72 | 85 | 82 | 75 | 7 | 13 | 6 |
| 3,501-4,000 | 87 | 80 | 71 | 87 | 82 | 75 | 12 | 9 | 10 |
| 4,001-5,000 | 89 | 82 | 73 | 89 | 83 | 76 | 12 | 13 | 12 |
| 5,001-6,000 | 90 | 79 | 66 | 90 | 80 | 71 | 5 | 12 | 6 |
| 6,001-8,000 | 91 | 82 | 67 | 90 | 83 | 73 | 6 | 15 | 13 |
| 8,001-10,000 | 87 | 86 | 73 | 86 | 87 | 77 | 5 | 13 | 5 |
| 10,001-20,000 | 94 | 84 | 74 | 94 | 85 | 78 | 16 | 19 | 18 |
| 20,001+ | 88 | 64 | 75 | 88 | 67 | 79 | 4 | 1 | 3 |
| Overall | 90 | 83 | 75 | 90 | 84 | 79 | 112 | 140 | 101 |

Annuity benefits employed to calculate the redistribution components were adjusted for earnings in excess of the 1972 carnings linit.
bredistribution components were calculated by subtracting the eean annuity benefit level from the mean 1972 OAI benefit level reported as a percentage of the mean 1972 OAI benefit level. Raw data used to calculate the roported results are available upon request.
4. The benctit incidence of the 1972 old-ane inourance proscm: Married, both retirid houncholds only
a. The effect of the wife's work atatus on the benefit incidence There are 1,394 households included in this sample: 614 two-earner households and 780 one-earner households. See Teble 7.11 for e description of the married, both retired, data set. The effect of the wife't work status on the distributional impact of the OAI program is exemined in Tables 7.12 and 7.13. Temale beneficiaries were classified by their work atatus, where work statue wat determined by OAI beneficiary eligibility criteria, and household income in 1972. Table 7.12 is aiailar to Table 7.1 except that only married households where both the husband and wife are retired in 1972 were included in the data set.
similar to the results in Table 7.1, all female bencficiaries, independent of work atatus and fanily income level, received positive income transfers from the OAI program in 1972 (that is, the radistribution componente in columns 4 a and 8 a in Table 7.12 are positive). The redistribution component expressed as a percentage of the female's OAI benefit level is, on average, negatively related to family income, indicative of the program's progressivity.

Table 7.13 comparea the differences in OAI benefit level (column 1), gearly annuity benefit in a type-6 actuarially fair retirment system based on the actual contributions made by the female (colunn 2) and the male (column 3), and redistribution component in percentage terms (column 4) for working and nonworking women across family income categories. The working woman who qualifies for benefits on her own account received, on average, retirement benefits that were approximately

Table 7.11. Population distribution for married, both retired householda by family income in 1977 and family type

| $\begin{aligned} & \text { Poatiy income } \\ & \text { In } 1972 \end{aligned}$ | Two-earner ${ }^{\text {a }}$ |  | One-aarnar ${ }^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Population $s 180$ | Parcentage dietribution | $\begin{aligned} & \text { Population } \\ & \text { aise } \end{aligned}$ | Percentage dietribution |
| \$ 0-2,000 | 3 | . 5 | 29 | 4.0 |
| 2,001-2,500 | 13 | 2.0 | 33 | 4.0 |
| 2,501-3,000 | 13 | 2.0 | 46 | 6.0 |
| 3,001-3,500 | 31 | 5.0 | 55 | 7.0 |
| 3,501-4,000 | 46 | 7.5 | 72 | 9.0 |
| 4,001-5,000 | 107 | 17.5 | 113 | 15.0 |
| 5,001-6,000 | 91 | 15.0 | 98 | 13.0 |
| 6,001-8,000 | 122 | 20.0 | 111 | 14.0 |
| 8,001-10,000 | 70 | 11.5 | 66 | 8.0 |
| 10,001-20,000 | 86 | 14.0 | 124 | 16.0 |
| 20,001+ | 32 | 5.0 | 33 | 4.0 |
| Total | 614 | 100.0 | 780 | 100.0 |

[^30]Table 7.12. Effect of the wifa's work status on wifeonly benefit incidence holdias fanily income constant (type-6, earnings adjuated)

| Total family ${ }^{c}$ income in 1972 | Ino-earner houschold ${ }^{\text {a }}$ |  |  |  |  | One-earner household ${ }^{\text {b }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) <br> Female OAI bencfit level (mean) | (2) <br> Actuarially fair bencfit from vife": annuity | (3) <br> Actuarially fair benefic from husband": annuity | (4) <br> Redistribution comproent |  | ```(5) \\ Fenale OAI benefit level (mean)``` | (6) <br> Actearially fair bencfic from wife" anauity | (7) <br> Actum arially fair benefit from husband's anauity | (8) <br> Redistribur tion component |  |
|  |  |  |  | (a) $1-2-3$ | (b) $\frac{1-2-3}{1}$ |  |  |  | (a) $5-6-7$ | (b) $\frac{5-6-7}{5}$ |
| \$ 0-2,000 | 506 | 29 | 26 | 451 | 89 | 418 | 0 | 35 | 383 | 92 |
| 2,001-2,500 | 752 | 18 | 60 | 674 | 90 | 542 | 1 | 42 | 499 | 92 |
| 2,501-3,000 | 1,023 | 38 | 70 | 915 | 89 | 702 | 1 | 89 | 612 | 87 |
| 3,001 $=3,500$ | 1,193 | 58 | 105 | 1,030 | 86 | 754 | 1 | 102 | 651 | 86 |
| 3,501= 4,000 | 1,210 | 62 | 140 | 1,008 | 83 | 912 | 1 | 143 | 768 | 84 |
| 4,001-5,000 | 1,255 | 65 | 157 | 1,033 | 82 | 918 | 1 | 138 | 779 | 85 |
| 5,001-6,000 | 1,316 | 61 | 182 | 1,073 | 82 | 929 | 1 | 172 | 756 | 81 |
| 6,001-8,000 | 1.413 | 80 | 171 | 1,162 | 82 | 955 | 1 | 162 | 792 | 83 |
| 8,001-10,000 | 1,442 | 88 | 148 | 1,176 | 83 | 896 | 2 | 159 | 735 | 82 |
| 10,001-20,000 | 1.508 | 80 | 129 | 1,299 | 86 | 933 | 1 | 144 | 788 | 84 |
| 20,001+ | 1,596 | 87 | 159 | 1,350 | 85 | 942 | 2 | 134 | 806 | 86 |

${ }^{\text {a }}$ Husband and wife are eligible for primary-worker benefits on their oun account.
$b_{\text {Husband }}$ is eligible for primary-worker benefits on his own account and the wife is eligible for dependent spouse's benefics only.

Crotal family income includes oni benefits in 1972.

Table 7.13. Comparison of OAI and type-6, earninge adjuated annuity bancfite for married woman with different labor-homemaker choicee holding fanily income conatant

| $\begin{gathered} \text { Total family } \\ \text { Income in } \\ 1972 \end{gathered}$ | (1) <br> Difference ${ }^{\text {e }}$ between female 0al benefit levals | (2) <br> Difference ${ }^{\text {b }}$ between actuarially fair bencifit from wife's annutey | (3) <br> Difference between actuarially fair bencfits from huabend'a annuity | (4) <br> Difference $\mathrm{in}^{\mathrm{d}}$ redistribution components as - percentage of OAI |
| :---: | :---: | :---: | :---: | :---: |
| 3 0-2,000 | 88 | 29 | -9 | -3 |
| 2,001-2,500 | 210 | 17 | 18 | -2 |
| 2,501-3,000 | 321 | 37 | -19 | +2 |
| 3,001-3,500 | 439 | 57 | 3 | 0 |
| 3,501-4,000 | 298 | 61 | -3 | -1 |
| 4,001-5,000 | 337 | 64 | 19 | -3 |
| 5,001-6,000 | 387 | 60 | 10 | +1 |
| 6,001-8,000 | 458 | 79 | 9 | -1 |
| 8,001-10,000 | 516 | 86 | -11 | +1 |
| 10,001-20,000 | 575 | 79 | -15 | +2 |
| 20,001+ | 654 | 85 | 25 | -1 |

'Fifty percent of the two-earner woman's share of her husband's yearly annulty bencfit less 50 percent of the onetearner women's chare of her huaband's yearly annuity benefit.
bifty percent of the two-earner woman's yearly annuity benefit minus 50 percent of the onemarner woman's yearly annuity benefit.

CThe mean level of oal benefits received by a woman in a twoearner houschold less the mean level of benefite received by a woman in a one-earner household.
dThe difference between redistribution components of women in twocarner and one-earner houscholds.
eTotal family income includes oal benefits in 1972.

50 percent larger then the auxiliary benefite received by the nonworking women. The bencfit differential ranges from 21 percent for the loweat income category to 69 percent for the higheat income category. ${ }^{1}$ Generslly speaking, entitled female workert received retirment benefita that mere larger than dependent apouse bencfite. One reason for the observed OAI benefit differential fe that the nonworkins wowan's bencfit is based on 50 percent of her husband's primary insurance amount, wheress the antitied female worker'a bencfit is based on her primary insurance amount if her PIA exceeds 50 percent of her apouac's PIA.

Working women received higher annuity benefits from an actuarially fair retirment syatem based on their actual contributiona than noaworking women (column 2, Table 7.13). Column 3 presenta the difference between annuity benefits received by working and nonworking women based on actual contributions made by their husbands. The negative values in column 3 indicate that the working woman received amaller annuity benefit from her huaband's joint-and-two-thirda ennuity than the nonworking woman. On net, working women received higher annuity benefite based on the houschold's OAI contributions, and, because of hef past contributions, she was afforded higher OAI benefits.

The difference in percentage of redistribution per dollar of OAI benefits for working and nonworking women is show in colum 4 of Table 7.13. Working women received a higher percentage of redistribution in the following income categories: $\$ 2,501-3,000, \$ 5,001-6,000$,

[^31]\$8,001-10,000, and \$10,001-20,000. But, nonworking women recaived an equal or higher percentage of redietribution per dollar of OAI benefite in all other income categories. It appears that there was slightly more rediatribution to nonworking women vig-f-vis working women. In absolute cerme, however, working women paid in more dollers in the form of oal contributions, and, in exchange, they received higher oal benefit levels. The relatively narrow differential in redistribution components sugseste that women, independent of work statua, were trested elmost equally in terme of redistribution.
b. The effect of the wifo's work status on husband-oniy bencfit incidence The findins of equal treatment acrose women with different labor-homemaker choices does not apply to men married to women with different labor-homemaker choices. Tables 7.14 and 7.15 represent the male veraions of Tables 7.12 and 7.13. It is interesting to note that the male redistribution components as a percentage of OAI benefits (columns 4b and 8b) are generally higher for males in one-carner householda relative to their male counterparts in two-earner households. The percentage of redistribution meanes follow the generally observed pattern-falling as family income risea. Bowever, the variance in the pattern is alighty smaller for males in a onemearner houschold (97 to 92 percent). This implies that males in one-earner households with family income of $\mathbf{\$ 0 - 2 , 0 0 0}$ received 97 cents of redistribution for every dollar of OAI benefit. Similarly, males in the \$5,001-10,000 income classes received 92 cents of rediatribution per dollar of oal benefit.

Table 7.14. Effect of the wife's work atatus on husband-only benefit incidence holding fanily income constant (type-6, earniags adjusted)

| Total family ${ }^{c}$ income in 1972 | IWo-earner household ${ }^{\text {a }}$ |  |  |  |  | One-earmer household ${ }^{\text {b }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) <br> Male OAI benefit level (mean) | (2) <br> Actuarially fair benefit from wife's annuity | (3) <br> Actuarially fair benefit from husband 's anauity | (4) <br> Redistribution component |  | (5) <br> Male OAI benefit level (mean) | (6) <br> Actuarially fair benefit from vife"a annuity | (7) <br> Actuarially fair benefit from husband's annuity | (8) <br> Redistribution component |  |
|  |  |  |  | (a) $1-2-3$ | $\begin{gathered} \text { (b) } \\ \frac{1-2-3}{1} \end{gathered}$ |  |  |  | (a) $5-6-7$ | $\begin{gathered} \text { (b) } \\ \frac{5-6-7}{5} \end{gathered}$ |
| \$ 0-2,000 | 906 | 29 | 26 | 851 | 94 | 1,026 | 0 | 35 | 991 | 97 |
| 2,001-2,500 | 1,349 | 18 | 60 | 1,271 | 94 | 1,309 | 1 | 42 | 1,266 | 97 |
| 2,501-3,000 | 1,521 | 38 | 70 | 1,413 | 93 | 1,604 | 1 | 89 | 1,514 | 94 |
| 3,001-3,500 | 1.598 | 58 | 105 | 1,435 | 90 | 1.727 | 1 | 102 | 1,624 | 94 |
| 3,501-4,000 | 1.961 | 62 | 140 | 1.759 | 90 | 1,995 | 1 | 143 | 1,851 | 93 |
| 4,001-5,000 | 1.986 | 65 | 157 | 1,764 | 89 | 2,103 | 1 | 138 | 1.964 | 93 |
| 5,001-6,000 | 2,150 | 61 | 182 | 1.907 | 89 | 2,092 | 1 | 172 | 1,919 | 92 |
| 6,001-8,000 | 2,056 | 80 | 171 | 1,805 | 88 | 2,091 | 1 | 162 | 1,928 | 92 |
| 8,001-10,000 | 1.947 | 88 | 148 | 1,711 | 88 | 2,086 | 2 | 159 | 1,925 | 92 |
| 10,001-20,000 | 1,907 | 80 | 129 | 1,698 | 89 | 2,062 | 1 | 144 | 1.917 | 93 |
| 20,001+ | 2,197 | 87 | 159 | 1.951 | 89 | 2,110 | 2 | 134 | 1,974 | 94 |

Husband and wife are eligible for primary-worker benefits on their own account.
${ }^{b}$ Husband is eligible for primary-worker benefits on his ona account and the wife is eligible for dependent spouse's benefits only.

CTotal family income includes OAI benefits in 1972.

Table 7.15. Comparison of OAI and eype-6, adjuated annuity benafits for married men in one-earnar and two-earner houceholda holding family Income conatant

| $\begin{aligned} & \text { Total family } \\ & \text { Income in } \\ & 1972 \end{aligned}$ | (1) <br> Diffarence ${ }^{\text {c }}$ betwean male OAI benefit levels | (2) <br> Difference ${ }^{\text {b }}$ between actuarially fair bancfita from wife's annuity | (3) <br> Differance ${ }^{\text {a }}$ between ectuarially fair benafita from husband's annutty | (4) <br> Difference in ${ }^{d}$ radiatribution component: as - percentage of OAI |
| :---: | :---: | :---: | :---: | :---: |
| \$ $0=2,000$ | -120 | 29 | -9 | -3 |
| 2,001-2,500 | 40 | 17 | 18 | -3 |
| 2,501-3,000 | -83 | 37 | -19 | -1 |
| 3,001-3,500 | -129 | 57 | 3 | -4 |
| 3,501-4,000 | -34 | 61 | -3 | -3 |
| 4,001-5,000 | -117 | 64 | 19 | -4 |
| 5,001-6,000 | 58 | 60 | 10 | -3 |
| 6,001-8,000 | -35 | 79 | 9 | 4 |
| 8,001-10,000 | -139 | 86 | -11 | -4 |
| 10,001-20,000 | -155 | 79 | -15 | -4 |
| 20,001+ | 87 | 85 | 25 | -5 |

[^32]Generally, malea in two-earner households received smaller oal benefits (coluan 1, Table 7.15), although males in two-earner failice received higher combined annuity benefits based on the ectual 0 al contributione of both carners in the houscholds. The difference in combined annuity benefits (columns 2 plus 3 in Table 7.15) acroas household eype is, in large part, a result of the annuiky bencfite received from the wife's joint-and-two-thirde annuity based on her actual oal contributions. Columa 4 in Table 7.15 show that the wale in a oneearner houechold consistently received a larger percentage of redistribution from the OAI progran than the male in a twomearner houschold.
c. The effect of the wife's work atatus on feally benefit incidence Table 7.16 represents the benefit incidence across one-earner and two earner houscholds, holding conatant family income in 1972. Column 7 indicates that, except for the lowat income category, family OAI bencfit levels were higher for two-earner houecholds vis-l-vis one-earner households. In addition, two-earner houacholds received higher family benefits from an setuarially fair retirament gystem (column 8). All fanily units, independent of household types: received positive income tranafers from the OAI progrin (columns 3 and 6). Furthermore, the oneearner household received a larger percentage of redistribution relative to the two-earner household for all income categories (column 9).
d. The importance of the household type in explaining the benefit incidence The tabular results regarding the percentage of redistribution by sex and household type across fanily income classes (colums 4b

Table 7.16. Effect of the wife's work status on fanily benefit incidence holding total fanily income constant

| Total fanlly income in 1972 | Two-earner thouschold |  |  | One-earner household |  |  | Comparison |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) <br> Fanily <br> OAI <br> bencfit <br> level | (2) <br> Fanily anaulty benefit ${ }^{6}$ | (3) <br> Redistribucion componeat as a percentage of fanily OAI benefits (1)-(2) | (4) <br> Fanly <br> OAI <br> benefit <br> level | (5) <br> Fanily anouity benefit ${ }^{8}$ | (6) <br> Bediseribution component as a percentage of fanlly MI bencfits (4)-(5) | (7) <br> Difference in fanily OAI bencfite (1)-(4) | (8) <br> Difference in fanily annulty benefic (2)-(5) | (9) <br> Difference in redistribution components (3)-(6) |
| \$ 0-2,000 | 1,411 | 111 | 92 | 1,433 | 71 | 95 | -22 | 40 | -3 |
| 2,001-2,500 | 2,101 | 156 | 93 | 1,851 | 87 | 95 | 250 | 69 | -2 |
| 2,501-3,000 | 2,544 | 217 | 91 | 2,306 | 181 | 92 | 238 | 36 | -1 |
| 3,001-3,500 | 2,791 | 328 | 88 | 2,481 | 208 | 92 | 310 | 120 | -4 |
| 3,501-4,000 | 3,171 | 404 | 87 | 2,907 | 289 | 90 | 264 | 115 | -3 |
| 4,001-5,000 | 3,242 | 443 | 86 | 3,021 | 279 | 91 | 221 | 164 | -5 |
| 5,001-6,000 | 3,466 | 487 | 86 | 3,021 | 346 | 89 | 445 | 141 | -3 |
| 6,001-8,000 | 3.470 | 502 | 86 | 3,046 | 326 | 89 | 424 | 176 | -3 |
| 8,001-10,000 | 3.359 | 472 | 86 | 2,983 | 322 | 89 | 376 | 150 | -3 |
| 10,001-20,000 | 3,414 | 417 | 88 | 2,995 | 289 | 90 | 419 | 128 | -2 |
| 20,001+ | 3,793 | 493 | 87 | 3,051 | 271 | 91 | 742 | 222 | -4 |

acombined OAI benefit received by the busband and uife in 1972.
${ }^{\text {b }}$ Combined annuity benefic received by the busband and ulfe.
and 8b, Tablea 7.12 and 7.14 are ammarizad in Figure 7.3. It is intereating to note that the percentage of radiatribution received by woman, independant of work teatue, ia ganerally lower than the comparable meneure for men. The observed male-tominale differential in redistribution is consistent acrosa all income categories. But, looking at the redistribution curves for women by household types in Fisure 7.3, it appears that the aise and pattern of the radistribution measure for women in one-estner and two-earner households are very aimiler. The observed sfinilarity cuggests that, although women with different work statuses paid in different amonts of onl contributiona, they were treated equally in terms of the percentege of oal benefita representing redietribution from the current workins generation.

The redietribution pettern for males in one-aarner and two-aarner households are similar; however, the absolute siae of the redietribution mescure varies significankly by houcehold type. It is clear from Figure 7.3 that the percentage of redistribution for males in one-earner households is ubsetentially lazger than the comparable meacure for males in twomearner houncholds across all income categories. One reason for the obvious sise disparity acrose all incone categories is the very sall (or zero) annuity benefits received from the nonworking wife's joint-and-two-thirds annuity. Because his wife's yearly annuity value is generally equal to zero, his redistribution component is larger.

Although males in one-earner households received preferential treatment from the OAI progran vis-arvis males in two-carner households

and famales, working vomen, ae group, received a significanty smaller percentage of radistribution when compared to working males. There are several reasona for the amaller rediatribution componente received by working woman. Firse, entieled women frequenty clatm reduced banelite. In 1967, 67 percent of the married fomale retired workers aged 65 and older received reduced banceits. By 1971, the proportion had increased to 76 percent. The proportion of bancficiary woman with reduced banctits puts downerd preseure on mean oal bancfit levala uad to calculate the rediatribution components. Second, working women have saller primary insurance amounte relative to working men becauce of their lowar earnings and intermiteont labor force participation. In 1971, a algificant proportion of retired women workert, eapecially the dually entitied, ware entitled to the minimu PIA. Malf of the dually ontitied women workers, In 1971, were entitled to the mininum PIA compared to seven percent of male workers. Diferences in PIA distributions for ale and fame Workers reflect differances in work histories. Man generally work for longer periods of time at higher cernings, resuleing in hgher pIAs. The last reason concerna the annuity benefit received by working women from their husband's past OAI contributions. Since the male worker pays into the syetem longer and, in addition, receives higher earnings, he has a larger accumulated tax contribution to purchase a joint-and-two-thirds at retirement. Assuning a commulty property approach to the actuarially fait benefit, the wife receives half of the yearly annuity benefit in an acturially fair system based on OAI contributions of her husband. The Wife's redistribution component is determined by subtracting her OAI
benefit level from her share of the yearly family annuity benefic based on her OAI contribution and her husband's OAI contributions. The value of her redistribution component is relstively small, therefore, because her OAI benefit level is generally amall because of her smaller piA relative to male workers combined with her incressed tendency to accept reduced benefits and the relatively large annuiky benefit received from her husbsad's joint-and-two-thirds combined with the annuity benefit bssed on her own OAI contributions.

Figure 7.4 sumarizes the tabular resulta in colume 3 and 6 in Table 7.16. The diatribution of redistribution components by household type illustrated in Figure 7.4 showe that onc-arner fenilies, on average, received preforential treatment from the OAI program. Again, the preferential status of one-earner families is explained by the nominal contributions made by the nonworking spouse in the one-earner family.

- The progressivity of the OAI prorran by houschold type The "end-point" approach to determining progressivity suggests that the program is "weakly" progressive: the variances for women and men in twocarner families are 90-82 and 94-88, respectively, and the variances for women and men in one-carner families are 92-81 and 97-92, reapectively. Progressivity assessment based on the "patterned" approach shows the program to be "generally" progressive given the generally observed inverse relationship between the percentage of redistribution and total family income. However, the "highest-income-group-comparison" approach exposes strong regressive features for women in both household types,

mild regreseive features for men in ona-aarner householde, and strons progressive faatures for man in two-aarner households.

Tigure 7.5 applias to famalat only and showa the program to be prograsiva at income levels less than $\$ 3,500$, but atrongly ragressive at income levels greater than $\$ 3,500$. Kiddle-income fomales, especially, are made worseoff relative to the highest income group of females, independent of houschold type. The progrean does not appear to be as regressive when focusing on males only (Vigure 7.6). The program demonstrated "elaaic" progresaiva feeturee for malea in two-earner housholds for income levels of $\mathbf{\$ 5 , 0 0 0}$ or less, and it demonstrated only "slight" regrasaive featurea for the $\$ 6,001$ to $\mathbf{\$ 2 0 , 0 0 0}$ range. The progren has a narrow progressive area ( $\mathbf{\$ 0}$ to $\$ 3,000$ ) for males in oneearner houscholds and somewhat "classic" regressive featurea for income levels in excess of $\mathbf{\$ 3 , 0 0 0}$. Tigure 7.7 is based on the household unit sorted by houschold type. Again, the prosram had "clasaic" prosressive features at low income levels ( $\$ 0-3,500$ ), but hed regresaive features at higher income levels. The program is more progressive and less regressive for twomearner relative to one-carner houscholds.
(8umary findings on annuity types 1, 2, 3, 4, and 5, male-to-female comparisons by annuity type, household-type comparisons by annuity type, and indexed to nonindexed comparisons by annuity type can be found in Appendix E, Tables $15.2,15.3,15.4,15.5,15.6$, and 15.7.)


Figure 7.5. Progressivity of che OAI prograa by household type, females only


Pigure 7.6. Progressivity of the OAl program by housebold type, males only


Pigure 7.7. Progressivity of the oni progran by household type
5. The effect of social recuriey paymente on the distribution of incomen both retired houscholde only

The effect of social security benefite on the distribution of income among elderiy households was axamined by dividing ell merriad couples where both membere were collecting OAI bencfite betwen 1962 and 1972 into quintile groups. Table 7.17 presente the distribution of income before and after paymant of social security bencitis. The distribution of personal income, exclusive of social sacurity bencite, wes highly skewed; the poorest 60 percent of the elderly population had lues than 20 percent of personsl income compared to the 60 percent of personal income held by the richest 20 percent of the elderly population. The addition of the husband's OAI bancilts did raduce the skewedness in the distribution of income. Column 2 displays the distribution of personal income inclusive of the husband's onl bencfics, but exclusive of the wife's oAI bencfits. Now, the poorest 60 percent received 30 percent of personal incone, whereas the richest 20 percent received just under 50 percent of personal income. Columan 3 displays the distribution of personal income after all fanif oAI bencfice were apportioned. The diatribution of personal income we, in spite of the social security progran, skewed in Lavor of the richest quintile, but the progran did increase the relative share of personal income received by the poorest 60 percent of the elderly. After receipt of all femily oal benefits, the poorest 60 percent had 34 percent of personal incone compared to 45 percent of personal income received by the richest quintile. Also, the husband's share of $O A I$ benefits had the greatest redistributional impact. This is expected since the absolute size of the male"s OAI benefit generally

Table 7.17. Distribution of incone for both retired population, before and after pagment of social security benefice

|  | (1) <br> Discribution of personal income before social securicy | (2) <br> Distribucion of perconal Lacome after husband's OAI benefite | (3) <br> Discribution of personal income after fanlly oal benefits | Mean personal incone |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Uithout } \\ & \text { social } \\ & \text { security } \end{aligned}$ | Weh husband bencfit oaly | $\begin{gathered} \text { With } \\ \text { fanily 0ar } \\ \text { benefits } \end{gathered}$ |
| Poorest quintile | 1.0\% | 6.05 | 8.08 | \$210 | \$2,142 | \$3,141 |
| Second quintile | 6.0 | 10.0 | 11.0 | 1,305 | 3,255 | 4,331 |
| Thind quintile | 11.0 | 14.0 | 15.0 | 2,535 | 4.557 | 5,635 |
| Fourth quintile | 21.0 | 21.0 | 21.0 | 4.913 | 6,877 | 7,973 |
| Richest quintile | 61.0 | 49.0 | 45.0 | 14,337 | 16,270 | 17,400 |
| Tocal | 100.0 | 100.0 | 100.0 |  |  |  |

exceeded the fomale's OAI benefit because of the wale's higher average carnings and atronger labor force attacheent, and because famalea typically collect auxiliary benefita which are 50 percent of the male's PIA.

Table 7.18 looks at the distribution of social security benefits by percentage share. Married couples in the sample received approximately $\$ 4.2$ million in OAI bencfite in 1972, of which 65 percent were paid to male bencficiaries and 35 percont were paid to fomale benoficiaries.

Overall, socisl security benefits were proportionally distributed to houscholds, mele bencficiaries, and female beneficiaries. Neverthelesa, the roughly proportional distribution of oal bencfits significantly improved the level of personal income for the poorest 60 percent of the elderly population. The poorest quintile received 19.3 percent of all social security benefits paid to both ratired, married couples in 1972, which increased its level of personal income by 1,394 percent.

In conclusion, column 1 of Table 7.17 indicates that the distribution of personal income before social security was sharply skewed in favor of the richest income quintile. The single-period analysis of OAI transfars showed that, although the distribution of personal incone after the addition of social security benefits was not distributed particularly evenly, there had been a relatively suall change toward increasing incose equality as a result of the program's Intergenerational transfer

Table 7.18. Distribution of social security benefits to both retired population by percentage share

| Quincile group | $\begin{aligned} & \text { All oal } \\ & \text { benefits } \end{aligned}$ | Male beneficiarles: OAI benefite | Female beneficiaries' OAI benefite | Percentage gain in personal income |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Household | $\begin{gathered} \text { Male } \\ \text { beneficiary } \end{gathered}$ | Female benefictary |
| Total | 4,231,935 | 2,732,532 | 1,499,403 |  |  |  |
| Percentage | 100.0 | 64.50 | 35.43 |  |  |  |
| Poorest quincile | 19.3\% | 19.7\% | 18.6\% | 1,394 | 919 | 475 |
| Second quintile | 19.9 | 19.9 | 20.0 | 232 | 149 | 83 |
| Third quintile | 20.4 | 20.6 | 20.1 | 122 | 80 | 42 |
| Fourth quintile | 20.2 | 20.1 | 20.3 | 62 | 40 | 22 |
| Richest quintile | 20.1 | 19.7 | 21.0 | 21 | 13 | 8 |
| Tocal | 100.0 | 100.0 | 100.0 |  |  |  |

mechaniam and income-smoothing faature. ${ }^{1}$ A closer look at the disbursement of OAI bencfits (Table 7.18) showed that benefits were, at best, proportionally distributed across quintile groups, but the largest relative gains in the level of personal income, before and after social security benefite, were realised by the poorest 60 percant of the elderly population.

The use of single-period analysis to assess the distributional iapact of social sacurity is insightful, but it can be very mialeading aince it fails to distinguish between the intergenerational tranafor and Incomermoothing features of the program. Because bencfits are contingent on past oal contributions, they are a mixture of the return on past contributions, redistribution within a retirement cohort, and redistribution across generations. The following tables in this section focus on the distributional impact of the intergenerational transfor mechanise only; that is, the income-smoothing feature has been stripped avay by use of type-6 annuity counterfactuals. Table 7.19 presents the distribution of redistribution components by quintile group, controlling for fanily type and sex. The distribution of income before and after apportioning the redistribution component is displayed in Table $\mathbf{7 . 2 0}$.

Similar to the distribution pattern of social security bencfits, the redistribution components mere distributed roughly equally across
${ }^{1}$ Recall, the social 'security progrea has two primary features: 1) an income-gmoothing feature whereby workers transfer a fraction of their labor caraings to their retirement years by participating in the progran during their carning years, and 2) an intergenerational transfer feature whereby income is transferred from the current working generation to the currently retired population.

Table 7.19. Distribution of redistribution components by quintile group controlling for fanily type and sex

|  | Two-earner |  |  |  | Onc-earner |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) <br> Female's share of redistribucion ${ }^{\text {a }}$ | (2) <br> Male's share of redistribution | (3) <br> Household's share of redistribution ${ }^{\text {a }}$ | Population districion | (4) <br> Fenale's share of cedistribution | (5) <br> Male's share of redistribution ${ }^{2}$ | (6) <br> Housebold's share of redistributiona | Population distrition |
| Poorest quintile | 16.7\% | 18.17 | 17.5\% | $18 \%$ | 20.82 | 21.12 | 21.08 | $22 \%$ |
| Second quincile | 20.1 | 20.5 | 20.4 | 20 | 19.7 | 19.4 | 19.4 | 20 |
| Third quintile | 20.3 | 22.0 | 21.3 | 22 | 18.9 | 19.4 | 19.3 | 19 |
| Fourth quiatile | 21.0 | 20.4 | 20.6 | 21 | 19.6 | 19.6 | 19.6 | 20 |
| Richest quintile | 21.9 | 18.9 | 20.1 | 20 | 21.0 | 20.5 | 20.6 | 20 |
| Total | 674.798 | 1,075,773 | 1,767,702 | 614 | 560,920 | 1,416,564 | 1,989,561 | 780 |

a Redistribution component calculations are based on type-6, earnings-adjusted counterfactual. .

Table 7.20. Diatribution of incone for marcied, both retired population before and after apportioning the redistribution component

| Quintile group | All trueholds |  | no-earper touehold |  |  | One-earner household |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) <br> Distribution of pesconal inocme before socinl socurity | (2) <br> Discribucion of percomal income aftor | (3) <br> Meceribucion of persenal income before | (4) <br> Distrilution of perconal tocres after | (5) <br>  | (6) <br> Distribution of persconal income befoce nc $^{2}$ | (7) <br> Destribucion of persomal income after | (8) <br> Rer effect |
| Prorcest quintile | 1.08 | 7.72 | 0.72 | 7.57 | 46.4 | 1.12 | 8.28 | +7.1 |
| Second quinctile | 6.0 | 10.9 | 5.6 | 11.2 | +5.6 | 5.6 | 10.6 | +5.0 |
| Thind quintile | 11.0 | 16.3 | 11.6 | 15.2 | +3.6 | 10.4 | 13.5 | +3.1 |
| Pourth quincile | 21.0 | 20.7 | 21.1 | 20.9 | -0.2 | 21.1 | 20.6 | -0.5 |
| Richest quintile | 61.0 | 46.4 | 60.0 | 45.6 | -14.4 | 61.8 | 47.1 | -14.7 |

[^33]quintile groups, independent of family type and sex (Table 7.19). It is interesting to note that 22 percent of the poorest one-aarner households Fecelved approximately 21 percent of all intergenerational tranafers to males and famales in one-arncr houscholds. Column in Table 7.19 indicates that apoueal benefits were, at best, proportionaliy distributed to dependent spouses of male workers and, therefore, were not diatributed principaliy to needy dependent spouses ss intended by the spousal benefit provision.

Table 7.20 dieplage the distribution for married, both retired population before and after apportioning the rediatribution components. Comparing colum 2 of Table 7.20 and colum 3 of Table 7.17, it 18 clear that singleqperiod analysis tends to overstate the true distributional Impact of the OAI program. The Intergenerational transfer mechanism did increase income equality but not to the extent that aingleoperiod analysis alleges of the "social adequecy" objective would seam to dictate.

## B. Regression Resules

The regression results reported in this section are based on the eight models described in Chapter VI. There are four permutations of the generalized single model labeled $1,2,3$, and 4. Recall that the specified models have identical independent variables but different dependent variables masuring the extent of redistribution. Similarly, there are four versions of the married model each having identical
independent variables, but, again, different measures of rediatribution were used at dependent variables.

In Chapter VI, the independent and dependent variables were defined and explained. The regression results presented in this section are organized es followa: 1) findings for the single model; 2) findings for the married model; and 3) aumary of findinge.

## 1. Sinkle models

The expected signs of the coefficients were discuased in Chapter VI and are oumarized in Table 7.21. Linear and loglinear models were astimated, in addition to the quadratic model, but the quadratic variables LTEAR2 and gerlan were found to be jointly aignificant in all permutationa of the generalized aingle model, although the quadratic terms, when taken separately, were not always found to be statiatically eignificant. Sumary statistics for the independent variables employed in the single model appear in Table 7.22. Na might be expected, there was evidence of correlation betwean the labor force experience variables (LTEAR and sEmbm). The estimated correlation coefficient was 0.91 and it is statistically significant at the one percent level. In spite of the strong correlation betwen the two labor force variables, the estimated coefficiants on LTEAR and sERLEA were significantly different from zero at one percent level for all permutations of the single model. At present, there is no obvious solution to this multicollinearity problem without introducing a new statistical problem, specifically, a specification error. However, the construction of a larger,

Table 7.21. Single ragression model variablea and expectad coefficient signe for models $1,2,3$, and 4 by survivorship sasumption

| Independent vartable | Dependent variables in modela 1, 2, 3, and 4 |  |  |
| :---: | :---: | :---: | :---: |
|  | Gander merged | Sex-racedietinct | Soctocconomicad ueted |
| ltear | Nogative | Negative | Negative or posizive |
| LTEAR2 | Positive | Positive | Negative or positive |
| SEX | Megative or positive | Poaitive | Positive |
| RACE | Mogative or positive | Negative | Megative |
| SERLES | Megative | Nagative | Megative |
| SERLM2 | Nogative or positive | Megative or positive | Magative or positive |
| RAGERI | Nogative | Megative | Megative |
| RAGER2 | Megative | Megative | Negetive |
| Ragers | Regative | Mogazive | Megative |
| RCOHORT1 | Poaitive | Positive | Positive |
| RCOHORT2 | Positive | Positive | Positive |
| EDOL | Positive | Positive | Hegative or positive |
| EDU2 | Nogetive or positive | Hegative or positive | Hegative or positive |
| EDO3 | Negative | Megative | Magative or posicive |
| EDO4 | Megative | Megative | Megative or positive |

Table 7.22. Sumary atatiatica for independant variables employed in the single regression models

| Variable | Mean | Seandard <br> deviation | Minimum | Maximum |
| :--- | :---: | :---: | :---: | ---: |
| LTEAR | 142,211 | 112,408 | 0 | 434,835 |
| SER | 0.61 | 0.49 | 0 | 1 |
| RACE | 0.06 | 0.24 | 0 | 1 |
| SERLEN | 19.08 | 9.64 | 0 | 1 |
| RAGER1 | 0.30 | 0.50 | 0 | 1 |
| RAGER2 | 0.24 | 0.42 | 0 | 1 |
| RAGER3 | 0.11 | 0.31 | 0 | 1 |
| RCOHORT1 | 0.32 | 0.47 | 0 | 1 |
| RCOHORT2 | 0.31 | 0.46 | 0 | 1 |
| EDU1 | 0.21 | 0.41 | 0.31 | 1 |
| EDU2 | 0.10 | 0.46 | 0 | 1 |
| EDU3 | 0.29 |  | 0 | 1 |
| EDU4 |  |  | 0 | 1 |

more diverse data set is likely to minimise the collinearity present between the labor force varisbles in this small, relatively homogenous single date set.
a. Entimation of the model uaing the annuity counterfactuale for a nonindexed, no carninge test adiuated ingurance prosem tementioned in Chapter VI, this permutation of the single model was estimated to isolate the partial offect of worker-specific characteristica on the percentage of rediatribution in the absence of cost-of-living and carnings test adjustments. This narrow definition of the prospan allowa for the isolation of the initial effect of the progressive benefit formula and the minimum bencfit provision. The reaulte for model 1 under different survivorship assumptions are reported in Table 7.23.

Looking first at the regression results for the model based on the gender-merged survivorship aasumption (column 1 in Table 7.23), it is worth noting that all the coefficiants for the independent variablea have the predicted sign (for those independent variables with predicted signs). The coefficients on the quantitative variables LTEAR and SERLES are significantly different from zero at one percont level; however, the coefficients for the quadratic terms LTEAR2 and semume were not significantly different from zero at a live percent level, although they were jointly significant at a one percent level. The confficients on the Control variables, RAGER3, RCOHORT1, RCOHORT2, and EDO4, were significantly different from zero at the one percent level. The coefficients on SEX, RACE, and EDO2 (variables with uapredicted coefficient signs) were not significantly different from zero.

Table 7.23. Single regreasion reaultg: Model 1 under different aurvivorship aseumptionsa,b

| variable | Survivorahip probability assumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Cender-merged | Sex-racedistinct | Sociocconomic adjusted |
| LTEAR | -4.426 ${ }^{\text {a }}$ | -4.166 ${ }^{\text {a }}$ | -4.288 ${ }^{\text {a }}$ |
|  | (4.02) | (3.68) | (3.34) |
| ltear2 | $0.219^{\text {d }}$ | 0.173 | 0.176 |
|  | (0.91) | (0.70) | (0.62) |
| SEX | -0.013 | $3.063{ }^{\text {a }}$ | $4.745^{\text {a }}$ |
|  | $(0.03)$ | (6.55) | (8.94) |
| race | 0.971 | 0.129 | -0.111 |
|  | (1.06) | (0.14) | (0.10) |
| SERLEA | -0.636 ${ }^{\text {a }}$ | -0.626 ${ }^{\text {a }}$ | -0.664 ${ }^{\text {a }}$ |
|  | $(5.17)$ | (4.95) | $(4.63)$ |
| SERLEN2 | $0.006{ }^{\text {c }}$ | $0.006^{\text {D }}$ | 0.006 |
|  | (1.71) | (1.59) | (1.27) |
| RAGERI | -0.500 | -0.354 | -0.354 |
|  | (0.90) | (0.62) | (0.55) |
| RAGER2 | -0.600 ${ }^{\text {d }}$ | -0.405 | -0.323 |
|  | (0.98) | (0.65) | ( 0.46 ) |
| RAGER3 | -2.126 ${ }^{\text {a }}$ | -2.315 ${ }^{\text {a }}$ | -2.834 ${ }^{\text {a }}$ |
|  | (2.78) | (2.95) | (3.18) |
| RCOHORT1 | 9.240 ${ }^{\circ}$ | $8.975^{\text {a }}$ | $9.634^{\text {a }}$ |
|  | (16.45) | (15.54) | ( 14.70 ) |
| RCOHORT2 | $(11.37)^{6.116^{a}}$ | $\begin{aligned} & 5.980^{\mathrm{a}} \\ & (10.81) \end{aligned}$ | $\begin{gathered} 6.495^{a} \\ (10.35) \end{gathered}$ |
| EDOI | 0.006 | -0.092 | -0.394 |
|  | (0.01) | (0.13) | (0.51) |
| EDU2 | -0.800 | -0.625 | -0.482 |
|  | (1.0) ${ }^{\text {d }}$ | (0.76) | (0.52) |
| cous | -0.540 ${ }^{\text {d }}$ | $-0.619^{\text {d }}$ | -0.573 |
|  | (0.86) | (0.96) | (0.78) |
| EDO4 | $-2.754^{\text {a }}$ | -3.050 ${ }^{\text {a }}$ | -2.535 ${ }^{\text {a }}$ |
|  | (3.89) | (4.18) | (3.07) |
| IMIERCEPT | $\begin{array}{r} 95.48^{\circ} \\ (88.19) \end{array}$ | $\begin{array}{r} 93.92^{a} \\ (84.38) \end{array}$ | $\begin{gathered} 92.45^{a} \\ (73.21) \end{gathered}$ |
| $\mathrm{R}^{2}$ | . 871 | . 863 | . 855 |
| N | 353 | 353 | 353 |

at-ratios in parentheses.
${ }^{\mathrm{b}}$ Significance levels (uppercase for 2-tail tests, lowercase for 1tail testa): A, a-1\%; B, b-5\%, C, c-10\%, D, d-20\%.

Colum 2 in Table 7.23 presents regrassion rasulte when sex and race survivorship differentials are accounted for in the annuity counterfactuals. All the coefficiente, excluding those on RACE and EDUL, have the expected sign. The coefficient on SEX is positive and significanty different from aero at one percent level. Ceteris paribus, women can expect radistribution component 3.06 percentage points larger than man because of their relatively longer life expectancles, on aversge. Contrery to expected resulte, nonwites, sfer accounting for their shortar life expactancies, can oxpect a rediatribution component 0.129 percentege pointe larger than whites, ceteris partbus.

Regression resulte for model 1 adjusting for socioeconomic differentials in survivorship are presented in colum 3 in Table 7.23. After accounting for sex, race, marital statua, education, and income differentials in survivorship, the OAI program wes still found to be progresaive; that if, the coefficient on LTEAR is negative and significantly different from zero at one percent level, and, although all coefficients on the education variables are negative, only moU is Agnificantly different from zero at a one percent level. Also, the cosfficient on RACE is negative, but not statistically significant.

The overall effect of accounting for differential life expectancies, in most cases, is slight, Clearly, from the siae of the coefficient on 8EX, women receive a aignificantly lagger rediatribution component when their relatively longer life expectancy is accounted for in their actusrially fair retirement insurance payment.
b. Estimation of the model uaing the annuity counterfactual for an
indexed, no carninge teat adjuated insurance prorram the dependent variable employed in this version of the single model is the redistribution residual, in percentage terme, assuming the retiree purchased an indexed, no earnings test annuity with her accumulated OAI contribution on the date of retirement. The variation in the residual is once again explained by the quadratic model with 12 independent variables. The estimated coefficients for model 2 by survivorship assumption appear in Table 7.24 .

In column 1, coefficients on LTEAR, sERLEN, and SERLEN2 have the correct sign (those with predicted signs) and are aignificantly different from zero at ane percent level. And the coefficient on LTraR2 has the correct sign and is significantly different from zero at a five percent level. All the control variables have the correct sign, and coefficients on RAGER3, RCOHORTI, RCOHORT2, and EDU4 are significantly different from zero at a one percent level.

Regression results for model 2 accounting for sex and race differentials in survivorship are shown in columa 2 of Table 7.24. The coefficients have the expected sign (those with predicted signs) except for Ragerl and edul. Incorporating indexing and survivorship differentials by race and sex into the measure of redistribution results in coefficients on the age of retirement variables that are mixed in sign but amall in size for ragral and ragrr2. The positive coefficient on RAGERI suggests that persons will maximize the percentage of redistribution by retiring at ages 62 to 64 when lifetime contributions

Table 7.24. Single regression results: Model 2, under different survivorahip assumptionsa,b

| variable | Survivorship probabliticy asaumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender merged | Sex-racedistinct | Socionconomicedjuated |
| ltear | -4.871 ${ }^{\text {a }}$ | -4.523 ${ }^{\text {a }}$ | -4.884 ${ }^{\text {a }}$ |
|  | (5.48) | (4.99) | (4.31) |
| LTEAR2 | $0.334^{\text {b }}$ | $0.276^{\text {c }}$ | $0.366^{\text {d }}$ |
|  | (1.72) | (1.39) | (1.48) |
| SEX | $\begin{aligned} & -0.072 \\ & (0.19) \end{aligned}$ | $\begin{aligned} & 3.101^{a} \\ & (8.29) \end{aligned}$ | $5.192^{\circ}$ |
| RACE | 0.711 | -0.117 | -3.487 ${ }^{\text {a }}$ |
|  | (0.96) | (0.16) | (3.71) |
| SERLEM | -0.662 ${ }^{\text {a }}$ | -0.630 ${ }^{\text {a }}$ | -0.676 ${ }^{\text {a }}$ |
|  | (6.68) ${ }^{\text {a }}$ |  | ${ }^{(5.35)} \mathrm{C}$ |
| SERLEM2 | $\begin{aligned} & 0.009{ }^{\wedge} \\ & (3.14) \end{aligned}$ | $\begin{aligned} & 0.009 \wedge \\ & (2.90) \end{aligned}$ | $\begin{aligned} & 0.007^{\mathrm{C}} \\ & (1.95) \end{aligned}$ |
| RAGERI | -0.054 | 0.105 | 0.182 |
|  | (0.12) | (0.23) | (0.32) |
| RAGUR2 | -0.467 ${ }^{\text {d }}$ | -0.274 | -0.116 |
|  | (0.95) | (0.55) | (0.19) |
| Racze3 | -2.415 ${ }^{\text {a }}$ | -2.50 ${ }^{\text {a }}$ | $-3.012^{\text {a }}$ |
|  | (3.92) ${ }^{\text {6.252 }}$ | (3.97) | (3.84) |
| RCOHORTI | (13.82) | (12.76) | (11.32) |
| RCOHORT2 | $4.066^{6}$ | $3.876^{\text {a }}$ | $4.391^{*}$ |
|  | (9.37) | (8.75) | (7.95) |
| EDU! | 0.087 | -0.055 | -0.303 |
|  | (0.16) | (0.10) | (0.44) |
| 8042 | -0.546 | -0.400 | -0.309 |
|  | (0.85) ${ }^{\text {d }}$ | (0.61) | (0.38) |
| 2003 | ${ }^{-0.467}{ }^{\text {d }}$ | ${ }_{(0.522}{ }^{\text {(1.01) }}$ | $-0.535$ |
| EDU4 | -2.189 ${ }^{\text {a }}$ | -2.41 ${ }^{\text {a }}$ | -2.069 ${ }^{\text {A }}$ |
|  | (3.83) | (4.13) | (2.84) |
| Imrurcept | $\begin{array}{r} 97.55^{a} \\ (111.74) \end{array}$ | $\begin{array}{r} 95.92^{\text {a }} \\ (107.68) \end{array}$ | $\begin{gathered} 94.395^{a} \\ (84.90) \end{gathered}$ |
| $R^{2}$ | . 881 | . 870 | . 853 |
| N | 353 | 353 | 353 |

${ }^{\text {at-ratios in parentheses. }}$
${ }^{\text {b }}$ Significance levels (uppercase for 2-tail tests, lowercase for 1 tail tests): A, a-1\%; B, b-5\%, C, c-10\%, D, d-20\%.
are used to purchase inflation and income insurance. This result may be more reflective of the way annuity bancfite were indaxed after retirement and the population diatribution of the alngle dats set than of the actual structure of the OAI program. This will be discussed further in subaction 3.

Similar resulte are obeained from the use of nociosconomic-adjusted survivorship probabilitias, except the coefficienta for sEX and RACE were found to be more statistice1ly aignificant.
e. Estimetion of the einsle model unins the annuity counterfactual
for a nonindexed, earninge test adjusted inourence program The
nominal annuity benefit employed to calculate the dependent variable was adjusted by the OAI carning teat formula for post-retirament carninge in excese of 81,680. The quadratic model had leas explanatory power, as reflected by the aignificantly smaller $R^{2}$, because 65 percent of perions Whth postretircment arninge in excaas of $\$ 1,680$ would have received zero annuity bencite for 1972, fesulting in radistribution components equal to 100 percent.

The estimated coefficienta in column 1 of Table 7.25 have the predicted sign with exception of EDUI; however, only the coefliciente for LTEAR, SERLEA, RCOHORT1, and RCOHORT2 are aignificantly different from zero at a one percent level and the coefficient for Ragers is significantly different from zero at a five percent level. Nonwites and persons with 0-7 years of education received slighty less redistribution from the OAI progran relative to whites and persons with eight years of education, respectively.

Table 7.25. Single regresaion reaulta: Model 3 under different survivorship assumptiona ${ }^{\text {, }}$ b

| variable | Survivorship probability asaumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gander merged | Sex-racedistinct | Sociocconomic adjusted |
| ltear | -6.586 ${ }^{\text {a }}$ | -6.208 ${ }^{\text {a }}$ | -6.460 ${ }^{\text {a }}$ |
|  | (3.55) | (3.34) ${ }^{\text {d }}$ | (3.18) |
| LTEAR2 | $0.516^{\text {d }}$ | $0.411^{\text {d }}$ | 0.451 |
|  | (1.27) | (1.01) | (1.01) |
| SEX | 0.393 | $3.20{ }^{\text {a }}$ | $4.789{ }^{\text {a }}$ |
|  | (0.51) | (4.18) | (5.72) |
| RACE | -0.048 | -0.852 | -1.201 |
|  | (0.03) | (0.55) | (0.71) |
| SERLEs | -0.625 | -0.605 ${ }^{\text {a }}$ | -0.619 ${ }^{\text {a }}$ |
|  | $(3.02){ }_{C}$ | ${ }^{(2.91)}{ }_{C}$ | $(2.73)$ |
| SERLEN2 | $0.012^{\text {C }}$ | $0.011^{C}$ | $0.01{ }^{\text {b }}$ |
|  | (1.89) | (1.79) | (1.46) |
| RAGERI | -0.513 | -0.301 | -0.291 |
|  | (0.55) | (0.32) | (0.28) |
| RAGER2 | -0.317 | -0.211 | -0.144 |
|  | (0.31) ${ }_{\text {b }}$ | (0.21) | (0.13) |
| RAGERS | -2.839 ${ }^{\text {b }}$ | $-2.918^{\text {b }}$ | $-3.431^{\text {a }}$ |
|  | (2.21) | (2.26) | (2.44) |
| RCOHORTI | $6.50{ }^{\text {a }}$ | $6.26{ }^{\text {a }}$ | $6.753^{\text {a }}$ |
|  | (6.87) | (6.61) | (6.53) |
| RCOHORT2 | $3.109^{\text {a }}$ | $2.993^{\text {a }}$ | $3.343^{\text {a }}$ |
|  | (3.44) | (3.30) | (3.37) |
| EDU1 | -0.295 | -0.482 | -0.824 |
|  | (0.26) | (0.43) | (0.67) |
| EDU2 | -0.072 | -0.069 | 0.233 |
|  | (0.05) | (0.05) | (0.16) |
| EDU3 | -0.785 | -0.802 | -0.736 |
|  | (0.74) | $(0.75)$ | ${ }^{(0.63)}{ }_{\text {D }}$ |
| EDOA | ${ }^{-1.783}(1.50)$ | (1.78) ${ }^{-2.713{ }^{\circ}}$ | -1.689 ${ }^{(1.29)}$ |
| IMTERCEPT | $97.93{ }^{\circ}$ | $96.42^{\text {a }}$ | $95.11^{\text {a }}$ |
|  | (53.78) | (52.81) | (47.69) |
| $\mathbf{R}^{2}$ | . 628 | . 629 | . 637 |
| N | 353 | 353 | 353 |

$a_{\text {r-ratios }}$ in parentheses.
${ }^{\text {b }}$ Significance levels (uppercase for 2-tail tests, lowercase for 1 tail tests): $A, a-1 \%$; $B, b-5 \%, C, c-10 \%, D, d-20 \%$.

Again, the introduction of differentials in aurvivorship, be it sexrace or sociosconomic, incrases the stae and aignificance of the coefficiente for RACE end SEX. With the carnings test adjuatment of annuity bencifte, the lavel of education variables follow curioue pach when mortality differentials ere introduced. First, including mortality differentiale by sex and race in the annuity counterfactual tends to increase the negative redistributionsl differential between persons with leas than elght or more than 11 years of aducation relative to persons with aight years of education. Dut, there is alight marrowing of the redistributional differential betwen parsona with 9-11 yeart of education relative to parsons with only elght gaars of schooling when sex and race differentials are reflected in mortality ratea. Further diagstregetion of mortality rates by maritel statue, income, and education levels tends to strengthen the tendency of the sex and race adjustments for EDUL only. For all other education categoriet, the rediatributional differential is marrowed, and, for EDU2, the differential sign is positive. This augests that the earnings test slighty weakens the progran's progressivity, which is consistent with the saller coefficients for LTAR in columas 2 and 3 relative to columa i.
d. Eatimation of the single model using the annuity counterfactual Lor an indered, earnings test adfusted insurance prosram Similar results are obtained with this final permutation of the generalfzed single model, where the dependent variable is based on an annuity counterfactual prouising to pay a real strean of benefits for the life of
the annuitant and some or all benefits are forfeited if post-recirament earninge exceed \$1,680. (The fraction forfated depends on the aize of the annuity bencfit and the amount of earnings over $\$ 1,680$.) The regression results are reported in Table 7.26.

With the notable exception of the coefficients for the education variables EDU1 and EDU2 in column 1, RAGER1 and EDU1 in column 2, and RAGERI in column 3, all the coefficients have the expected sign. In colum 1, the coefficients on EDUl and EDU2 are negative and positive, respectively, indicating that persons with leas than eight years of education received less, and persons with 9-11 years of education received more, redistribution per dollar of oal benefit relative to persons with eight years of schooling. The redistributional differential generally increases whth the incorporation of disaggregated mortality differentials.
e. Comparison of models 1,2 , and 4 controlling for differential survivorship probebilities In the previous subsections, the effect of differential mortality on the estimated conficients across permutations of the generalized single model was examined. This subsection focuses on the effect of different progran features on the size and sign of the estianted parameters, holding the survivorship assuaption constant. The coefficient estimates for models 1,2 , and 4 for the gender-merged and socioeconomic-adjusted survivorship probability assumptions are reproduced in Tables 7.27 and 7.28 , respectively.

Looking first at the coefficients in Table 7.27, it is interesing to note that benefit indexing and earnings test adjustments, when

Table 7.26. Single regression resulta: Model 4, under different survivorahip asaumptionsa,b

| variable | Survivorahip probability asaumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gander-merged | Sax-racediatinct | Socioeconomicadj uated |
| LTEAR | -6.589 ${ }^{\text {a }}$ | -6.101 ${ }^{\text {a }}$ | -6.639 ${ }^{\text {a }}$ |
|  | (4.11) | (3.87) ${ }^{\text {d }}$ | ${ }_{(3.65)}$ |
| LTEAR2 | $\begin{aligned} & 0.528^{c} \\ & (1.51) \end{aligned}$ | $\begin{aligned} & 0.439{ }^{d} \\ & (1.17) \end{aligned}$ | $\begin{aligned} & 0.532^{D} \\ & (1.34) \end{aligned}$ |
| sEX | 0.284 | $3.164^{\text {a }}$ | $5.156^{\text {a }}$ |
|  | (0.43) | (4.87) | (6.87) |
| RACE | -0.103 | -0.943 | -4.362 ${ }^{\text {a }}$ |
|  | (0.08) | (0.72) | (2.89) |
| serlen | -0.661 ${ }^{\text {a }}$ | -0.628 ${ }^{\text {a }}$ | -0.649 ${ }^{\text {a }}$ |
|  | (3.70) | (3.57) | $(3.20)$ |
| SERLEM2 | $0.014^{\text {a }}$ | $0.014^{\text {A }}$ | $0.012^{8}$ |
|  | (2.67) | (2.62) | (1.95) |
| Ragerl | -0.129 | 0.063 | 0.149 |
|  | (0.16) | (0.08) | (0.16) |
| Racera | -0.283 | -0.227 | -0.074 |
|  | (0.32) | (0.26) | (0.07) |
| RAGER3 | -3.051 ${ }^{\text {a }}$ | -3.044 ${ }^{\text {a }}$ | -3.576 ${ }^{\text {a }}$ |
|  | (2.75) ${ }^{3.851}{ }^{\text {a }}$ | $(2.79)$ 3.598 | (2.83) ${ }^{3.989}$ |
| RCOHORTI | (4.72) | (4.48) | (4.30) |
| RCOHORT2 | 1.435 ${ }^{\text {b }}$ | $1.331^{\text {b }}$ | $1.598^{\text {b }}$ |
|  | (1.84) | (1.73) | (1.80) |
| EDOI | -0.136 | -0.392 | -0.701 |
|  | (0.14) | (0.41) | (0.64) |
| EDU2 | 0.115 | 0.138 | 0.293 |
|  | (0.10) | (0.12) | (0.22) |
| EDU3 | -0.685 | -0.701 | -0.711 |
|  | (0.75) | (0.72) | (0.68) |
| EDO4 | $-1.417^{\text {c }}$ | $-1.723^{\text {b }}$ | $-1.441^{\text {a }}$ |
|  |  |  | (1.23) |
| IMIERCEPT | $\begin{gathered} 99.747^{a} \\ (63.42) \end{gathered}$ | $\begin{gathered} 98.229^{a} \\ (63.51) \end{gathered}$ | $\begin{aligned} & 96.934^{a} \\ & (54.26) \end{aligned}$ |
| $\mathbf{R}^{\mathbf{2}}$ | . 624 | . 624 | . 636 |
| H | 353 | 353 | 353 |

$a_{t-r a t i o s ~ i n ~ p a r e n t h e s e s . ~}^{\text {in }}$
bsignificance levels (uppercase for 2-tail teats, lowercase for 1ta11 tests): $A, a-1 \% ; B, b-5 \%, C, c-10 \%, D, d-20 \%$.

Table 7.27. Single regrasion raalts: Comperison of modela 1,2, and 4 using gender-merged aurvivorship probabilities

| Variable | Model 1 | Model 2 | Model 4 |
| :---: | :---: | :---: | :---: |
| ltear | -4.426 | -4.871 | -6.589 |
| LTEAR2 | 0.219 | 0.334 | 0.528 |
| sax | -0.013 | -0.072 | 0.284 |
| RACE | 0.971 | 0.711 | -0.103 |
| struen | -0.636 | -0.662 | -0.661 |
| SERLEN2 | 0.006 | 0.009 | 0.014 |
| RAGER1 | -0.500 | -0.054 | -0.129 |
| RAGER2 | -0.600 | -0.467 | -0.283 |
| ragers | -2.126 | -2.415 | -3.051 |
| RCOHORTI | 9.240 | 6.252 | 3.851 |
| RCOHORT2 | 6.116 | 4.066 | 1.435 |
| EDU1 | 0.006 | 0.087 | -0.136 |
| E0U2 | -0.800 | -0.546 | 0.115 |
| 2003 | -0.540 | -0.467 | -0.685 |
| EDu4 | -2.754 | -2. 189 | -1.417 |
| Intercept | 95.48 | 97.55 | 99.747 |
| $R^{2}$ | . 871 | . 881 | . 628 |

Table 7.28. Single regression results: Comparison of models 1, 2, and 4 using socioeconomic-adjusted survivorthip probabilities

| Variable | Model 1 | Model 2 | Model 4 |
| :---: | :---: | :---: | :---: |
| ltear | -4.288 | -4.884 | -6.639 |
| LTEAR2 | 0.176 | 0.366 | 0.532 |
| SEX | 4.745 | 5.192 | 3.156 |
| Race | -0.111 | -3.487 | -4.362 |
| SERLEM | -0.664 | -0.676 | -0.649 |
| S8RLEM2 | 0.006 | 0.007 | 0.012 |
| RMCERI | -0.354 | 0.182 | 0.149 |
| RACER2 | -0.323 | -0.116 | -0.074 |
| RMCER3 | -2.834 | -3.012 | -3.576 |
| RCOHORTI | 9.634 | 6.529 | 3.989 |
| RCOHORT2 | 6.495 | 4.391 | 1.598 |
| E001 | -0.394 | -0.303 | -0.701 |
| EDU2 | -0.482 | -0.309 | 0.293 |
| EDO3 | -0.573 | -0.535 | -0.711 |
| E004 | -2.535 | -2.069 | -1.441 |
| Intercept | 92.45 | 94.395 | 96.934 |
| $\mathrm{R}^{\mathbf{2}}$ | . 855 | . 853 | . 636 |

accounted for in the annuity countarfactual, do have an effect on the relationahip between the independent and dependent variablea ae reflected In the eatimated coefficienta. For inatance, the coefficient on the lifetime carninge meacure increases in absolute aise with the introduction of indexing and carning test adjuatments into the annuity counterfactual. At first blush, this evidence would tend to suggest that the program becomea more progresaive as the annuity counterfactual more closely approximates the OAI program. However, this ganeralisation may be too atrong in light of the observed pattern on the coefficients for LTEAR2 and the education variables. The coefficiont for LTEAR2 enters whe a positive sign in colum 1 and increasea acrosa the model, offsetting the strength of the negative coefficient on LTHAR. Likewise, the coefficienta on the education variable show a weakening of progressivity across the models. The coefficient estimates for mDU across the models show a withering away of the rediatributional gains for persons with 0-7 years of education relative to persons with eight years of schooling. The redistributional losses associated with education levels of 13 or more years of educazion are reduced, and for education levels 9-11 the loss not only diminishes but becomes a gain when the earning test is added to the annuity counterfactual.

A few additional petterns across models are worth mentioning. The sign change on the estimated coefficient for SEX with the accounting for the earnings test suggests that women were more likely to continue working after retirement and, as a result, women tended to have slightly larger redistribution components. The pattern on the coefficient for

RACE, on the other hand, suggests that the redistributional gains of nonwhites are reduced under indexing and, with the sddition of an earnings test, nonwhites receive slighty less redistribution when compared to their white counterparts. The last, and perhaps the most dramatic, pattern to be mentioned concerns the estimated coefficients on the retirament cohort variables, RCOHORTI and RCOHORT2. The redistribution gains for persons retiring in 1962-1965 and 1966-1968 relative to the 1969-1972 retirement cohort consistently diminioh acrose modela.
similar results are observed using socioeconomic-adjusted probabilities (see Table 7.28). It is interesting to note that females received slighty more redistribution from an indexed system relative to males, sgain, because of their longer life expectancies. Alternatively, nonwhites are made significantly worse off, in terms of the reduced share of redistribution from an indexed system, relative to whites because of rece differentials in survivorship (compare columas 2 and 3).

## 2. Married modele

Reported regression results are based on the estimation of four permutations of the generalized married quadratic model. Linear and loglinear models were estimated, but the quadratic variables FLTEAR2, SERLEN2, and _sERLBN2 were found to be jointly, although only flitear2 was found to be separately, significant in all permutations of the generalized eodel. The expected signs for all 24 independent variables are summarized in Table 7.29, and sumary statistics for each independent

Table 7.29. Married regression model variables and expected coefficient signe for modele 5, 6, 7, and 8 by survivorahip assumption

| Independent variable | Dependent variablea in models $5,6,7$, and 8 |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender merged | Sex-tacediatinct | Socfoeconomicadj usted |
| TLTEAR | Megative | Megative | Magative or positive |
| pITEAR2 | Positive | Positive | Negative or positive |
| race | Mogative or positive | Megative | Negative |
| SERLEM | Megative | Megative | Megative |
| SERLEM | Megative | Megative | Mogative |
| Strlen2 | Magative or positive | Nogative or positive | Negative or positive |
| SERLEM2 | Magative or positive | Megative or positive | Ragative or poaitive |
| Ragirl | Mogative | Magative | Megative |
| RAGER2 | Megative | Negative | Megative |
| Racre3 | Mogative or positive | Magative or positive | Megative or positive |
| RAGER! | Pegative | Megative | Negative |
| Ragerz | Hegative | Megative | Megative |
| TCOHORTI | Positive | Positive | Poaltive |
| RCOHORT2 | Positive | Positive | Positive |
| RCOHORI! | Positive | Positive | Poaitive |
| RCOHORT2 | Positive | Positive | Positive |
| EDOI | Positive | Positive | Regative or positive |
| EDU2 | Hegative or positive | Megetive or positive | Megative or positive |
| EDU3 | hegative | Hegative | Megative or posicive |
| EDUA | Hegative | Megative | Hegative or positive |
| _ EDO1 | Posicive | Positive | Megative or |
| _EDU2 | Mogative or positive | Magative or positive | Hegative or posizive |
| -8D03 | Megative | Hegative | Megative or positive |
| _ EDU4 | Hegative | Megative | Hegative or positive |

variable appear in Table 7.30. There ma ovidence of correlation between the aervice length variablae within a houachold, but collinearity wea not a problem between the lifetime carninga meagure ( $\operatorname{FLTEAR}$ ) and service length variables (SERLEN, _SERLER). The correlation coefficient on the service length variablae SERLEN and _gerlen wat relatively saall, 0.33, but aignificantly different from $2 e r 0$ at the five percent lovel.
a. Estiantion of the model using the annuity countarfactual for a nonindexed, no carnings teat adfunted insurance prosram he discussed In Chapter VI, the annuity counterfactual uned to determine the percentage of rediatribution maa besed on the assumption that the retirement candidate purchased a life annuity that promised payment of a nominal stream of income for life and the size of the bencfit payment was invariant to post-ratirement earninge. Then, the quadratic model with 24 independant variablea was catimated to isolate the partial effect of houschold-specific characteristice on the percentage of redistribution for the household. The results for model 5 under difforent survivorship asaumptiona are presented in Table 7.31.

In the regression for the gender-merged survivorship probabilities (colum 1), all independent variables have the predicted sign, with the excoption of SERLEM, RAGER3, EDU1, EDU4, _EDU1, _EDU3, and _EDU4. Of those variables with the predicted sign, only FLTEAR, FLTEAR2, _RAGERI, RCOHORT1, RCOHORT2, _RCOHORTI, and _RCOHORT2 have eatimated coefficients that are significantly different from zero at a five percent level. And, of those variables with the unpredicted sign, only the cooffiefent for RAGER is significantly different from zero at a one percent level.

Table 7.30. Sumary atatistice for iadependent variables amployed in the married regression models

| Variable | Mean | stendard deviation | Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: |
| fltear | 241,996 | 153,621 | 0 | 805,200 |
| RAcE | 0.02 | 0.13 | 0 | 1.00 |
| strums | 6.43 | 8.41 | 0 | 35.00 |
| _struen | 21.50 | 10.14 | 0 | 36.00 |
| RACERI | 0.76 | 0.43 | 0 | 1 |
| RACER2 | 0.11 | 0.31 | 0 | 1 |
| Racer3 | 0.10 | 0.31 | 0 | 1 |
| _racer! | 0.42 | 0.49 | 0 | 1 |
| _rucerr | 0.26 | 0.44 | 0 | 1 |
| RCOnORT1 | 0.26 | 0.44 | 0 | 1 |
| RCOHORT2 | 0.29 | 0.45 | 0 | 1 |
| _rconorti | 0.36 | 0.48 | 0 | 1 |
| -8COHORT2 | 0.31 | 0.46 | 0 | 1 |
| EDOI | 0.18 | 0.38 | 0 | 1 |
| EDU2 | 0.17 | 0.38 | 0 | 1 |
| EDU3 | 0.25 | 0.44 | 0 | 1 |
| EDOM | 0.16 | 0.36 | 0 | 1 |
| _8DO1 | 0.23 | 0.42 | 0 | 1 |
|  | 0.16 | 0.37 | 0 | 1 |
| - ED03 | 0.17 | 0.38 | 0 | 1 |
| ${ }_{-2004}$ | 0.15 | 0.36 | 0 | 1 |

Table 7.31. Married regression resulta: Model 5 under different survivorahip sasumptiona ,

| Variable | Survivorahip probability asaumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender-merged | Sex-racedistinct | Sociocconomicsdj usted |
| fltear | -4.071 ${ }^{\text { }}$ | -3.994 ${ }^{\text {a }}$ | -4.002 ${ }^{\text {A }}$ |
|  | (26.81) | (26.72) | (26.73) |
| PLTEAR2 | $0.154^{\text {e }}$ | $0.152^{*}$ | $0.157^{\text {A }}$ |
|  | (5.80) | (5.82) | (6.00) |
| RACE | -0.305 | -0.718 ${ }^{\text {d }}$ | $0.977^{*}$ |
|  | (0.53) | (1.27) | (1.73) |
| SERLEN | 0.007 | 0.008 | 0.008 |
|  | (0.25) | (0.29) | (0.29) |
| SERLEN | -0.043 ${ }^{\text {c }}$ | -0.042 ${ }^{\text {c }}$ | -0.042 ${ }^{\text {c }}$ |
|  | (1.49) | (1.51) | (1.49) |
| SERLEN2 | 0.000 | 0.000 | 0.000 |
|  | (0.01) | (0.01) | (0.07) |
| SERLIN2 | 0.001 | 0.001 | 0.001 |
|  | (0.95) | (0.96) | (1.01) |
| RAGER1 | -0.056 | 0.038 | -0.044 |
|  | (0.25) | (0.17) | (0.20) |
| RAGER2 | -0.429 ${ }^{\text {c }}$ | -0.460 ${ }^{\text {c }}$ | -0.528 ${ }^{\text {b }}$ |
|  | (1.43) | (1.55) | (1.78) |
| RAGER3 | $0.774^{\text {a }}$ | $0.779^{\text {a }}$ | $0.849^{\text {a }}$ |
|  | (2.93) | (3.05) | (3.32) |
| PMGER | -0.534 ${ }^{\text {a }}$ | -0.528 ${ }^{\text {a }}$ | $-0.546^{\text {a }}$ |
|  | $(3.05){ }^{\text {c }}$ | (3.37) | $(3.16)$ |
| RAGER2 | -0.291 ${ }^{\text {c }}$ | -0.273 ${ }^{\text {c }}$ | -0.295 ${ }^{\text {c }}$ |
|  | (1.50) | (1.43) | (1.54) |
| RCOHORTI | (1.874) | ${ }^{1.7466^{\circ}}$ | $1.788^{a}$ |
| RCOHORT2 | $1.493^{\text {a }}$ | $1.421^{\text {a }}$ | $1.444^{\text {a }}$ |
|  | (7.51) | (7.26) | (7.37) |
| RCOnorti | $5.404^{\text {a }}$ | $5.394^{\text {a }}$ | $5.359^{\text {a }}$ |
| RCOHORT2 | $(24.67)$ $3.556^{\text {a }}$ | (25.01) $3.544^{\text {a }}$ | (24.82) ${ }^{3.56}{ }^{\text {a }}$ |
|  | $\begin{aligned} & 3.556^{3} \\ & (17.65) \end{aligned}$ | $\begin{aligned} & \left(17.544^{\circ}\right. \end{aligned}$ | $\begin{aligned} & 3.536 \\ & (17.80) \end{aligned}$ |
| EDOL | -0.126 | -0.118 | -0.301 |
|  | (0.52) | (0.49) | (1.26) |
| at-ratios in parentheees. |  |  |  |
| cail ${ }^{\text {b }}$ (esign | levels (upperca $12 ; B, b=5 \%, C \text {, }$ | $\begin{aligned} & \text { 2-tail tee } \\ & D=d-20 \% . \end{aligned}$ | wercase for 1- |

Table 7.31. continued

| Variable | Survivorahtp probability asaumpion |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender merged | Sex-racedietinct | Sociocconomi cadjusted |
| EDU2 | -0.201 | -0.180 | 0.084 |
|  | (0.84) | (0.77) | (0.36) |
| EDU3 | -0.088 | -0.070 | 0.091 |
|  | (0.38) | (0.31) | (0.40) |
| EDU4 | 0.203 | 0.223 | 0.969 ${ }^{\text {A }}$ |
|  | (0.74) | (0.82) | (3.58) |
| EDU1 | -0.107 | -0.095 | -0.038 |
|  | ${ }^{(0.49)}$ | $(0.44)$ | (0.18) |
| $2^{\text {EDU2 }}$ | $0.332{ }^{\text {D }}$ | $0.317^{\text {D }}$ | ${ }^{0.309}{ }^{\text {D }}$ |
|  | (1.42) | (1.37) | (1.34) |
| ED03 | 0.047 | 0.044 | 0.055 |
|  | (0.19) | (0.18) | (0.23) |
| 2004 | 0.051 | 0.043 | 0.055 |
|  |  | (0.16) | (0.20) |
| Intercept | $\begin{gathered} 92.560^{a} \\ (208.47) \end{gathered}$ | $\begin{gathered} 92.655^{a} \\ (211.94) \end{gathered}$ | $\begin{gathered} 92.520^{a} \\ (211.35) \end{gathered}$ |
| $R^{\mathbf{2}}$ | . 849 | . 848 | . 846 |
| N | 1,394 | 1,394 | 1,394 |

Of the aix quantitative variables, only FLTEAR and FLTEAR2 explain a aignificant amount of the variation of the percentage of redietribution around its mean. As expected, the estimated coefficients on PLTEAR and PLTEAR2 are negative and positive, respectively, but, when taken together, there existe a negative association between the family measure of the percontage of redistribution and family lifatime carnings. The estimated coefficients for the education variables for the husband and wife are amall, and they were found to be statistically inaignificant, eeparately and jointly. However, the aigns on the education variable coefficients, especially on EDU1, EDU4, _EDU1, and EDU4, challenge the progressivity conclusion based exclusively on the overall sign of the coefficient on the family lifetime carnings measures.

The interpretation of the other independent variables is straightforward and consistent with earlier discussions for the single models, with the exception of maGER3. The coefficient for RAGER3 is positive and it is statistically significant. This suggests that households where the woman retired after age 71 received a rediseribution component that was . 774 percentage points larger than households where the woman retired at age 65, ceteris paribus.

Maxt, looking at regression results in columa 2, there are but minor changes in the estimated coefficients after accounting for mortality differentials by sex and race. The coefficient for RACz, while small and statistically insignificant, indicates that nonwhite households received slighty less redistribution relative to white households. The coefficient for RACE is, however, only slightly larger after adjustments
are made for race differentials in arvivorship. Perhaps, though, the most curious finding ts the sign switching on the coefficient for RAGERI after introducing sex and race differentials in urvivorship. Now, households where women retired before age 65 and after age 72 received silghty larger redistribution components relative to houscholds where the woman retired at age 65.

The regression resules for model 5 after accounting for socioeconome differentials in survivorship are presented in colum 3 of Table 7.31. The cofficionts for the following variables are significantiy different from zero at five percent level: FTEAR, FLTEAR2, RACE, RAGER2, RAGER3. MAGER1, RCOHORT1, RCOHORT2, _RCOHORT1, RCOHORT2, and EDU4. Two interesting results should be noted. The coefficient for RACE is positive and significantly different from sero at one percent level after controlling for race, sex, marital status, education, and income differentials in survivorship. Also, the coefficient for EDU4 is positive and significantly different from zero at a one percent level. That is, houscholds where the woman has some college education received a redigtribution component that was approximately 97 percentage pointe larger than households where the woman had eight years of education.

Comparisons of the results scross survivorship assumptions suggest that for married households aggregate results do not significantly change, except for RACE, RMGZRI, and EDUA, with mortality rate disaggregation.
b. Estimation of the model using the annuity councerfactual for an indexed, no earnings test adjusted insurance progran. The dependent variable employed in this version of the married model is based on an
annuity counterfactual promising a real stream of benefits for the life of the annuitants. The variation in the dependent variable is once again explained by the quadratic model with 24 independent variables. The estimated coefficients by survivorship assumption appear in Table 7.32.

Regression results for model 6 based on gender-merged survivorship probabilities are reported in colum 1. The coefficients for Firear, Flitear2, rager2, racer3, _racer1, _rager2, rcohort1, rcohort2, _rcohort1, and _RCOHORT2 are significantly different from aero at a five percent level, and they enter with the predicted aign. When the annuity promises to pay a fixed real benefit level for the life of the annuttants, the household received slighty more redistribution if the woman elected to retire prior to age 65, as reflected by the coefficient for RAGERI. The redistribution gains are larger yet for the houschold when the woman retired after age 71, everything else equal.

The results for the education dumy variables are mixed with all eight coefficients saall. According to the signs of the coafficients for EDU1, EDU2, EDU3, and EDU4, households received slightly less redistribution when the fomale member had less than eight or 9-12 years of education, whereas households received slightly more redistribution when the fomale member had some college education relative to households where the famale member had eight years of schooling. Turning to the comparable coefficiants for the male member, households where the male member had nine or more years of schooling received slightly larger redistribution components (although the marginal gain decreased with extra years of schooling), whereas the opposite was crue for households

Table 7.32. Married regresaion rasulta; Modal 6 under different survivorship asaumptiona ${ }^{\text {a }} 6$

| Varieble | Survivorship probability acauption |  |  |
| :---: | :---: | :---: | :---: |
|  | Cender-merged | Sax-racadiatinct | Sociocconomic adjuated |
| fltear | -3.894 ${ }^{\circ}$ | -3.793 ${ }^{\text {a }}$ | $-3.791^{\text {A }}$ |
|  | (31.03) | (30.79) | (30.90) |
| fltarz | $0.190^{\text {a }}$ | $0.185^{\text {a }}$ | $0.190^{\text {A }}$ |
|  | (8.62) | $(8.56)$ | (8.84) |
| Race | -0.197 | -0.606 ${ }^{\text {c }}$ | $1.097{ }^{\text {a }}$ |
|  | (0.42) | (1.30) | (2.37) |
| StrLen | 0.006 | 0.007 | 0.007 |
|  | $(0.27)$ | $(0.32)$ | $(0.32)$ |
| _SERLEM | -0.031 ${ }^{\text {c }}$ | -0.031 ${ }^{\text {c }}$ | -0.030 ${ }^{\text {c }}$ |
|  | (1.30) | (1.32) | (1.28) |
| SERLM 2 | 0.000 | 0.000 | 0.000 |
|  | (0.01) | (0.04) | (0.10) |
| SLRLEM2 | 0.000 | 0.000 | 0.001 |
|  | (0.82) | $(0.83)$ | (0.87) |
| Ragzal | 0.081 | $0.202^{\text {d }}$ | 0.117 |
|  | (0.44) | (1.12) | (0.65) |
| RAGER2 | -0.473 ${ }^{\text {b }}$ | -0.518 ${ }^{\text {b }}$ | -0.565 ${ }^{\text {a }}$ |
|  | (1.90) | (2.12) | (2.32) |
| Ragers | 1.113 ${ }^{\text {a }}$ | $1.119^{\text {a }}$ | ${ }^{1.1679}{ }^{\text {a }}$ |
|  | ${ }_{\text {( } 5.19)}$ | ${ }_{-0.473^{\circ}}$ | $(5.57)$ $-0.435^{\text {a }}$ |
| RActra | (2.72) | (3.32) | (3.08) |
|  | -0.306 ${ }^{\text {b }}$ | -0.277 ${ }^{\text {b }}$ | -0.297 ${ }^{\circ}$ |
|  | (1.90) | (1.75) | (1.88) |
| RCOHORTI | $\begin{aligned} & 1.056^{\circ} \\ & (5.72) \end{aligned}$ | $\begin{aligned} & 0.877^{a} \\ & (4.84) \end{aligned}$ | $\begin{gathered} 0.929^{\circ} \\ (5.15) \end{gathered}$ |
| Rconoriz | $0.965^{\text {a }}$ | $0.868^{\text {a }}$ | $0.891^{\text {a }}$ |
|  | ( 5.87 ) | (5.38) | (5.55) |
| RCOHORT | $3.691^{\text {a }}$ | $3.764^{\circ}$ | $3.711^{\text {a }}$ |
|  | (20.39) | (21.18) | (20.97) |
| _RCOHORT2 | $2.345^{\circ}$ | $2.379^{\text {a }}$ | $2.357^{\text {a }}$ |
| enul | $(14.08)$ -0.084 | $(14.56)$ -0.074 | ${ }_{(14.48)} 0.270^{\text {D }}$ |
|  | (0.42) | (0.38) | (1.37) |
| $a_{\text {c-ratios }}$ in parentheses. |  |  |  |
| $\begin{gathered} \text { bsign } \\ \text { tail tests } \end{gathered}$ | levels (upperca $17 ; B, b-5 k, c$ | $\begin{aligned} & \text { 2-talit tea } \\ & D, d-20 \%, \end{aligned}$ | wercase for 1- |

Table 7.32. continued

| Variable | Survivorship probability asaumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender-marged | Sex-racedietinct | Socionconomic adjusted |
| EDU2 | -0.148 | -0.123 | 0.151 |
|  | (0.75) | (0.64) | (0.78) |
| EDU3 | -0.045 | -0.023 | 0.159 |
|  | (0.23) | (0.16) | (0.85) |
| E0U4 | 0.140 | 0.168 | $1.054^{\text {A }}$ |
|  | (0.62) | (0.75) | (4.75) |
| _EDU1 | -0.138 | -0.122 | -0.071 |
|  | ${ }^{(0.76)}{ }^{\text {D }}$ | $(0.69)^{\text {( }}$ | ${ }^{(0.40)}$ |
| _-8022 | ${ }^{0.2666^{\circ}}(1.37)$ | $0.249^{\text {D }}$ $(1.31)$ | 0.239 $(1.26)$ |
| _2003 | 0.058 | 0.054 | 0.064 |
|  | (0.29) | (0.27) | (0.33) |
| EDU4 | 0.020 | 0.006 | 0.009 |
| Intercept |  |  | (0.04) |
|  | $\begin{gathered} 94.233^{\circ} \\ (256.81) \end{gathered}$ | $\begin{gathered} 94.302^{a} \\ (261.83) \end{gathered}$ | $\begin{gathered} 94.167^{a} \\ (262.50) \end{gathered}$ |
| $R^{2}$ | . 848 | . 846 | . 845 |
| $N$ | 1,394 | 1,394 | 1,394 |

where the male mamber had lese than eight years of education when compared to householda where the male member had aight years of schooling, ceteris paribua.

Introducing disaggregated survivorship probebilities does change some of the besic lindings under the gender-merged assumption. First, looking at the sex-race disaggragated assumption in column 2 of Table 7.32, the changes are relatively minor and confined to race and sex-distinct dumay variables. The race coefficient is slightly more negative, sa are the cocfficients for RAGER2 and _RAGERI. Alternatively, the redistributional gains to houscholds where the famale retired prior to age 65 were slightly increased; however, the redistributional gains to houscholds where the female member retired prior to 1969 were slightiy reduced.

When survivorship probabilities are further disaggragated by marital status, education, and income, the coefficient estimates affected are for the variables RACE, EDU1, EDU2, EDU3, EDUA, _EDU1, and _EDU4. Clearly, the most dramatic change pertains to the coofficient for pact; the coefficient for race in column 3 ia ponitive and significantly different from zero at a one percent level. Therefore, nonwhite households received redistribution conponents 1.097 percentage points larger than white houscholds, ceteris paribue.

Similarly apeaking, the accounting for education differentials in survivorship, in addition to sex differentials, affects the estimated coefficients for EDO1, EDO2, EDU3, EDOH, _EDO1, and _EDU4. The houschold measure of redistribution was smaller if the female member had less than
eight yeare of education, but it was larger if the famale member had more than eight yeare of education. The coefficiente on EDU1, EDU2, and EDU3 were anall; however, the coefficient for EDUA was poaitive and significantly different from sero at the one percent level. The size of the rediatributional lose for houscholds where the ane mamer had less than efght years of echooling decreaced when sex and education differentials in survivorship ware introduced. However, the estmated coefficients for EDU2 and ZDU3 were remarkably stable under different survivorship sesumptions.
c. Eletmation of the married model using the annuity counterfactual Gor the nonindexed, earning test adusted insurance prostan the dependent variable was constructsd using the nominel annuity banefit counterfsctual adjused by the anl earnings test formule. The explanatory power of the generalised married model, as reflected by the smeller $\mathrm{R}^{2}$, is significantiy wakened by the larger deviacione in the redistribution measure for obecrvetions affected by the earnings cest. Approximately cen percent of che married households were affected by the eamings tast.

A11 the estisated coefficients in columa 1 of Table 7.33 have the predicted sign, with the exception of SERLPH, SERLRM2, EDU1, EDU4, EDUI, EDU3, and EDU4. Of the coefficients with the correct sign, the eatimates for PLTEAR, FLTEAR2, RAGER3, RAGBR2, RCOHORT1, RCOHORT2, RCOHONT1, and _RCOHORT2 are significanty different fron zero at the five percent level. Only one of the coefficients with the wrong sign is statistically significant, moth. The coefficients on the service length

Table 7.33. Married regression resulta: Model 7 under different survivorship asaumptions ${ }^{\text {a }}$ b

| Variable | Survivorship probability assumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender merged | Sex-racedistinct | Sociocconomicadj usted |
| fltear | -3.949 ${ }^{\text {a }}$ | $-3.874^{\text {a }}$ | $-3.884^{\text {A }}$ |
|  | (16.18) | (16.16) | (16.28) |
| pltear2 | $0.176^{\circ}$ | $0.176^{\circ}$ | $0.179^{\wedge}$ |
|  | (4.11) | $(4.13) \mathrm{d}$ | (4.28) |
| Race | -0.358 | -0.770 ${ }^{\text {d }}$ | $0.920^{\text {d }}$ |
|  | (0.39) | (0.85) | (1.02) |
| SERLEN | 0.007 | 0.008 | 0.007 |
|  | (0.16) | (0.18) | (0.17) |
| 8ERLEN | -0.023 | -0.023 | -0.022 |
|  | (0.51) | (0.50) | (0.49) |
| SERLEN2 | -0.001 | -0.001 | -0.001 |
|  | (0.69) | (0.70) | (0.72) |
| serlen2 | 0.001 | 0.001 | 0.001 |
|  | (0.61) | (0.60) | (0.62) |
| Racert | -0.224 | -0.129 | -0.201 |
|  | (0.63) | (0.37) | (0.58) |
| RACER2 | -0.122 | -0.149 | -0.207 |
|  | (0.25) | (0.31) | (0.44) ${ }^{3.405}{ }^{\text {a }}$ |
| RAGER3 | $3.40^{\circ}$ | 3.362 ${ }^{\text {a }}$ | 3.405 ${ }^{\text {a }}$ |
|  | ${ }_{-0.354}^{(8.15)}$ | ${ }_{-0.399}(8$. | ${ }_{(8.35)}{ }_{-0.362}{ }^{\text {c }}$ |
| racerl | (1.26) ${ }_{\text {b }}$ | (1.44) | (1.31) |
| pactre | $-0.601^{\text {b }}$ | -0.578 ${ }^{\text {b }}$ | -0.594 ${ }^{\text {b }}$ |
|  | (1.92) | ${ }^{(1.88)}{ }^{1.631}{ }^{\text {a }}$ | (1.94) |
| RCOHORT1 | (4.87) | (4.62) | (4.78) |
| RCOHORT2 | $1.373^{\text {a }}$ | 1.308 ${ }^{\text {a }}$ | $1.337^{\text {a }}$ |
|  | (4.30) | (4.17) | (4.28) |
| _RCOHORTI | $3.794^{\text {a }}$ | $3.803^{\text {a }}$ | $3.784^{\text {a }}$ |
|  | (10.77) | (11.00) | (10.99) |
| _RCOHORT2 | ${ }_{\left(1.9800^{9}\right.}$ | 1.989 ${ }^{\text {a }}$ | $1.998^{\text {a }}$ |
| EDU1 | -0.236 | -0.226 | ( 6.31 ) |
|  | (0.60) | (0.59) | (1.07) |
| $\mathbf{a t - r a}^{\text {a }}$ | entheses. |  |  |

Table 7.33. continued

| Veriable | Survivorship probebility aceumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender-merged | Sax-recedistinct | Socionconomicedjueted |
| EDU2 | -0.319 | -0.297 | -0.043 |
|  | (0.83) | (0.79) | (0.11) |
| zdu3 | -0.396 ${ }^{\text {d }}$ | -0.370 ${ }^{\text {d }}$ | -0.216 |
|  | (1.07) | (1.02) | (0.60) |
| EDU4 | 0.238 | 0.249 | $0.92{ }^{\text {B }}$ |
|  | (0.54) | (0.57) | ${ }^{(2.15)} \mathrm{C}$ |
| _801 | $-0.680^{\circ}$ | -0.657 ${ }^{\circ}$ | $-0.602^{\text {c }}$ |
| _LDU2 | ${ }_{(1.92)}{ }_{0.453}$ | ${ }_{(1.89)}{ }^{\text {(1) }}$ | $(1.74){ }^{\text {( }}$ |
|  | ${ }^{0.453}{ }^{\text {(1.20) }}$ | ${ }^{0.435}{ }^{(1.18)}$ | $\begin{gathered} 0.429^{D} \\ (1.17) \end{gathered}$ |
| ED | 0.000 | -0.003 | 0.020 |
| $\underline{1004}$ | $(0.0)$ | (0.01) | $(0.05)$ |
|  | $0.616^{\text {c }}$ | $0^{0.603}{ }^{\text {c }}$ | $0.598^{\text {c }}$ |
| Intercapt |  |  | $\begin{aligned} & (1.40) \\ & 93.856^{a} \end{aligned}$ |
|  | $\begin{gathered} 93.934^{8} \\ (131.60) \end{gathered}$ | $\begin{gathered} 94.001^{8} \\ (134.12) \end{gathered}$ | ${ }_{(134.51)}^{93.856^{8}}$ |
| $\mathrm{R}^{2}$ | . 619 | . 618 | . 619 |
| \% | 1,394 | 1,394 | 1,394 |

variables (SERLEN, _SERLEN, SERLEN2, and _SERLEN2) have mixed aigns and thoy are statiatically inaignificant, saparately and jointly.

The introduction of disaggragated aurvivorship probabilities, elthar by sax and rece or sex, race, marital statue, income, and education, does not aignificantly affact the aggragate reaulta, with the notable exception of RACE and the educazion variables.
d. Eatiantion of the married model uaing the annuity counterfactual for an indexed, carninge teat adfuatad inaurance prosram The final permutation of the generalized married model mas eatimated to explain the variation in the redistribution component calculated using an indexed annuity counterfactual adjusted by the OAI earnings test formula. The regression results are reported in Table 7.34 by aurvivorahip assumption.

Based on the gender-merged sasumption, the estimated coefficients for fltear, fltearz, rager3, rager2, rcohorti, rcohort2, rcohorti, and _lloniort2 have the predicted sign and were aignificantly different from zero at a five percent level (see column 1). The coafficient for _ eDul was significanty different from zero at a five percent level, but it did not have the predicted sign. Again, the coefficients for the education variables were aixed and statiatically insignificant, separately (with the exception of _EDU1), but not jointly.

Disaggregating survivorship probabilities by race and sex resulted in only modest changes in the coefficient estimetes for RACE and RAGERI (see columa 2). Further disaggregation of survivorship probabilicies by marital status, income, and education, also, resulted in only modest

Table 7.34. Marriad ragresaion results; Model 8 under differant eurvivorahip aasumptiona, ${ }^{\text {a }}$

| Varieble | Survivorship probability asauption |  |  |
| :---: | :---: | :---: | :---: |
|  | Cander marged | Sex-racediatinct | Socioeconomic adjuated |
| TLTEAR | -3.786 ${ }^{\circ}$ | -3.688 ${ }^{\text {a }}$ | $-3.689^{\text {A }}$ |
|  | (18.22) | (18.17) | (18.36) |
| ILTEAR2 | $0.205^{*}$ | $0.200^{\text {a }}$ | $0.206^{\text {A }}$ |
|  | (5.64) | (5.64) | (5.85) |
| RACE | -0.234 | -0.639 | $1.059{ }^{\text {c }}$ |
|  | (0.30) | $(0.83)$ | $(1.40)$ |
| StrLem | 0.005 | 0.006 | 0.005 |
|  | (0.14) | (0.16) | (0.15) |
| SERLM | -0.012 | -0.012 | -0.010 |
|  | (0.32) | (0.31) | (0.28) |
| SERLEM2 | -0.001 | -0.001 | -0.001 |
|  | (0.68) | (0.68) | (0.70) |
| SERLEM2 | 0.000 | 0.000 | 0.000 |
|  | (0.45) | (0.44) | (0.44) |
| RAGERI | -0.039 | 0.081 | 0.007 |
|  | (0.13) | (0.27) | (0.02) |
| RACER2 | -0.221 | -0.261 | -0.299 |
|  | (0.54) | (0.65) | (0.75) |
| RACER3 | $3.262^{\text {a }}$ | $3.226^{\circ}$ | $3.240^{\text {a }}$ |
|  | ${ }_{-0.234}\left(9.19{ }^{\text {d }}\right.$ | $(9.30)$ -0.308 | (9.43) ${ }^{-0.270}{ }^{\text {d }}$ |
| RACERI | (0.97) | (1.32) | (1.16) |
| RACER2 | -0.525 ${ }^{\text {b }}$ | -0.492 ${ }^{\text {b }}$ | $-0.505^{\text {b }}$ |
|  | (1.97) | (1.89) | (1.96) |
| RCOHORTI | $\begin{gathered} 0.949^{a} \\ (3.10) \end{gathered}$ | $\begin{gathered} 0.785^{a} \\ (2.63) \end{gathered}$ | $\begin{gathered} 0.844^{a} \\ (2.85) \end{gathered}$ |
| RCOHORT2 | $0.876^{\text {a }}$ | 0.788 ${ }^{\text {a }}$ | 0.817 ${ }^{\text {a }}$ |
|  | (3.22) | (2.97) | (3.11) |
| RCOHORTI | $2.344^{\text {a }}$ | $2.433{ }^{\text {a }}$ | $2.401{ }^{\text {a }}$ |
| COHORT2 | (7.82) ${ }_{\text {( }}$ | (8.31) | $(8.28)$ |
|  | $(3.79)$ | (4.08) | $\begin{aligned} & 1.098^{\circ} \\ & (4.12) \end{aligned}$ |
| EDOI | -0.171 | -0.160 | -0.353 |
|  | (0.51) | (0.49) | (1.10) |
| ${ }^{\text {a c-ratios in parenthesas. }}$ |  |  |  |
| cail ${ }^{\text {bsign }}$ | levels (upperca | $\begin{aligned} & \text { 2-tail tee } \\ & , ~ D, ~ d-20 \% . \end{aligned}$ | wercase for l- |

Table 7.34. continued

| Variable | Survivorahip probebility asaumption |  |  |
| :---: | :---: | :---: | :---: |
|  | Gender-merged | Sax-racediatinct | Sociocconomic adjuated |
| EDU2 | -0.240 | -0.215 | 0.050 |
|  | (0.74) | (0.67) | (0.16) |
| EDU3 | -0.268 ${ }^{\text {d }}$ | -0.241 | -0.066 |
|  | (0.85) | (0.78) | (0.21) |
| EDU4 | 0.170 | 0.188 | $0.998{ }^{\text {A }}$ |
|  | (0.45) | (0.51) | ${ }^{(2.75)}{ }^{\text {c }}$ |
| _EDU1 | -0.606 $(2.02)$ | ${ }^{-0.579}{ }^{(1.97)}$ | ${ }^{-0.529}(1.82)$ |
| EDU2 | $(2.02)$ 0.375 | $(1.97)$ 0.352 | $(1.82)$ 0.345 |
|  | (1.17) | (1.13) | (1.11) |
| 2003 | 0.040 | 0.036 | 0.060 |
|  | (0.12) | (0.11) | $(0.19){ }_{\text {D }}$ |
| _ 804 | $0.506^{\text {c }}$ | $0.485^{C}$ | $0.469{ }^{\text {D }}$ |
| Intercapt |  | $(1.34)$ <br> 95.379 | $\begin{aligned} & (1.31) \\ & 95.230^{a} \end{aligned}$ |
| Intercapt | $\begin{array}{r} 95.34^{\mathrm{a}} \\ (156.93) \end{array}$ | $\begin{gathered} 95.379^{\circ} \\ (160.70) \end{gathered}$ | $\begin{gathered} 95.230^{\mathrm{a}} \\ (162.03) \end{gathered}$ |
| $R^{2}$ | . 611 | . 610 | . 612 |
| N | 1,394 | 1,394 | 1,394 |

changes in the parameter estimates. The estimates for model 8 employing aocioeconomic-adfuated survivorahip probsbllities are presented in column 3 of Table 7.34. The coefficient for RACE does not have the prodicted aign and is significantly different fros sero at a ten percent level. The coefficiant for EDUL is generally more negative and EDU1 lesa negative as aurvivorship probabilities are more disaggregated. The coefficient for EDU2 turns positive when mortality diffarentials by marital statua, income, and education are included, and, more importantly, the coafficient for tDU4 ia poaitive and aignificantly different from zero at a one percent level.
e. Comparison of modela 5, 6, and 8 controlling for differential survivorship probabilities In this subsection, the effect of different progras features on the alze and aign of the estimated coefficients will be investigated, under the same survivorship asamption. In Table 7.35, the cocfficients for models 5, 6, and 8 using gender-merged survivorship probabilities are presented. Comparisons of models 5, 6, and 8 findings based on sociocconomicadjusted survivorship probabilities appear in Table 7.36e

Hoat of the coefficient estimates are remarkably stable across progran features, but some laportant trends are observed. First, the combined effect of lltear and PLTEAR2 shows a weakening of the program's progressivity when the annuity counterfactual includes indexing and the earnings test. Second, the coefficient for RAGERI is positive when benefit indexing is included in the annuity counterfactual, but becomes negative when, in addition to indexing, the earnings test is adopted.

Table 7.35. Married regreasion results: Comparison of models 5, 6, and 8 using gendar-merged survivorship probabilitiee

| Variable | (1) <br> Model 5 | (2) <br> Model 6 | (3) <br> Model 8 |
| :---: | :---: | :---: | :---: |
| mitear | -4.071 | -3.894 | -3.786 |
| MLTEAR2 | 0.154 | 0.190 | 0.205 |
| RACE | -0.305 | -0.197 | -0.234 |
| gerlen | 0.007 | 0.006 | 0.005 |
| SERLEN | -0.043 | -0.031 | -0.012 |
| SERLEN2 | 0.000 | 0.000 | -0.001 |
| szRLIM2 | 0.001 | 0.000 | 0.000 |
| RAGER1 | -0.056 | 0.081 | -0.039 |
| RAGER2 | -0.429 | -0.473 | -0.221 |
| RAGER3 | 0.774 | 1.113 | 3.262 |
| - Pagral | -0.534 | -0.394 | -0.234 |
| PAGER2 | -0.291 | -0.306 | -0.525 |
| RCOHORT! | 1.874 | 1.056 | 0.949 |
| RCOHORT2 | 1.493 | 0.965 | 0.876 |
| [RCOHORT1 | 5.404 | 3.691 | 2.344 |
| _rconoriz | 3.556 | 2.345 | 1.046 |
| ED01 | -0.126 | -0.084 | -0.171 |
| EDU2 | -0.201 | -0.148 | -0.240 |
| EDU3 | -0.088 | -0.045 | -0.268 |
| 2004 | 0.203 | 0.140 | 0.170 |
| EDOU | -0.107 | -0.138 | -0.606 |
| - EDU2 | 0.332 | 0.266 | 0.375 |
| -2003 | 0.047 | 0.058 | 0.040 |
| _2004 | 0.051 | 0.020 | 0.506 |
| Intercept | 92.560 | 94.233 | 95.34 |
| $\mathrm{R}^{2}$ | 0.849 | 0.848 | 0.611 |

Table 7.36. Married regrecsion reaults: Comparison of modele 5, 6, and 8 ualng socioeconomic-adjueted survivorship probebilities

| Variable | (1) <br> Model 5 | (2) <br> Model 6 | (3) <br> Model 8 |
| :---: | :---: | :---: | :---: |
| Fltear | -4.002 | -3.791 | -3.689 |
| fltrarz | 0.157 | 0.190 | 0.206 |
| race | 0.977 | 1.097 | 1.059 |
| SERLEN | 0.008 | 0.007 | 0.005 |
| _SERLEN | -0.042 | -0.030 | -0.010 |
| serlen2 | 0.000 | 0.000 | -0.001 |
| SERLEN2 | 0.001 | 0.001 | 0.000 |
| RAGER! | -0.044 | 0.117 | 0.007 |
| RAGER2 | -0.528 | -0.565 | -0.299 |
| rager3 | 0.849 | 1.167 | 3.240 |
| - Rageri | -0.546 | -0.435 | -0.270 |
| - Racrez | -0.295 | -0.297 | -0.505 |
| RCOMORTI | 1.788 | 0.929 | 0.844 |
| RCOHORT2 | 1.444 | 0.891 | 0.817 |
| _ RCOHORTI | 5.359 | 3.711 | 2.401 |
| _RCOHORT2 | 3.536 | 2.357 | 1.098 |
| EDOI | -0.301 | -0.270 | -0.355 |
| EDU2 | 0.084 | 0.151 | 0.050 |
| EDU3 | 0.091 | 0.159 | -0.066 |
| EDU4 | 0.969 | 1.054 | 0.998 |
| 2001 | -0.038 | -0.071 | -0.529 |
| EDD2 | 0.309 | 0.239 | 0.345 |
| _EDU3 | 0.055 | 0.064 | 0.060 |
| EDPU4 | 0.055 | 0.009 | 0.469 |
| Intercept | 92.520 | 94.167 | 95.230 |
| $\mathrm{R}^{2}$ | 0.846 | 0.845 | 0.612 |

However, the coefficient for RAGER3 becomes progressively larger as the annuity counterfactual more closely replicates the OAI program. Looking at the comparable variables for men, the coefficient for _RAGER1 decreases in size, whereas the coefficient for frager2 increases in size as additional program features are included in the snnuity counterfactuel. Third, the coefficients for the retirament cohort variables (RCOHORT1, RCOHORT2, _RCOHORT1, _RCOHORT2) systematically decrease across the model variations.

Similar reaults, although not identical measures, are observed in Table 7.36.
3. Sumary of regression findinge
a. Lifetime carning variables (LTRAR, LTEAR2, FLTEAR, FLTEAR2)

For all permutations of the single and married models, the estimated confficient for the houschold measure of lifetime carninga was negative. This suggests that, when all other houschold characteristics were held constant, houscholds with higher lifetime earnings received smaller redietribution components. The relationship between percentage of redistribution and lifetime carnings was, however, nonlinear (the confficient $B_{1}$ is negative and $B_{2}$ is positive). Thus, the percentage of redistribution decreases at a decreasing rate as lifetime earnings increases. (Technically, the percentage of redistribution will at first decrease but later increase as lifetime earnings increases; however, given the range of LTEAR and plfEar in this study, the measured
relationship batwean the percantage of radistribution and lifetime earnings wes negative.)

The incluaion of disaggragated survivorship probabilitias did not reverse the relationship batwaen the radistribution measure and lifatime carnings. For the aingle model, accounting for mortality diffarentials by sax and race genarally weakened the relationship between the redistribution and earnings measures. Dut, further dieaggragation by merital statue, income, and education tended to atrangthen the relationship ovar compareble estimates using sex and rece differentiale and, in several cases, over the similar catimates for age-only mortality differentials. On the other hand, for married houscholds, the relationship betwaen the rediatribution measures and lifetime carninge was consistently meakened when sex-race and sex-race-marital status-income-education differentials were introduced. Therefore, it is not accurate to conclude that highly disaggregated mortality rates reverse or substantially weaken the progreasivity of the program. From the findings on married households, mortality rates disaggregated by sex and race challenge the program's progressivity slightly less than mortality rates disaggragated by sex, race, marital status, income, and education.

Findings on the effect of benefit indexing on the relationship between the percentage of redistribution and lifetime earnings are consistent across household types. Por single households, the inclusion of indexing in the annuity counterfactual slightly weakens the negative relationship between the percentage of redistribution and lifetime earnings in the models with the earnings. That is, independent of the
dagree of mortality rate diasgregation, the OAI program wes found to be less progressive for ainsle houscholds after the inclusion of benafit indexing in the annuity counterfactual. For all the married models, there is a atronger negative relationahip between the percentage of rediatribution of lifetime carninge without indexing. Hence, in all of the single married models, the OAI progrea is less progressive when the snnuity counterfactual includes benefit indexing.

The addition of the earninge teat consiatently weakena the relationahip between the percentage of redistribution and lifetime earnings for married housaholds, but it consistently atrengthens the relationship for aingle housholds. These findinge are sugseative of different employment deciaions by single and married housaholds after retiremant. The strengthening of the relationship for aingle housaholds would seem to indicate that aingle persons with lower lifetime carnings were more inclined to work after retirement. After examining the data set, it was found that 25 single households were affected by the carnings test, of which 65 percent were women. A majority of the households affected by the earnings teat had lifetime carninge meaures below the sample average. The labor force attachment of women after retirement may reflect not only the sef distribution of the retirement population, but that single momen typically have less physically demanding occupations which characteristically permit greater staying power. The opposite was true for the married population. Generally speaking, high income, married persons tended to continue working after retirement. The employment pattern of the married households is consistent with studies
on retirement pactarna (Boakin, 1977, Pechman et a1.: 1968). In 1966, only 1.6 million of the 17 million perions eligible for ratiremant benafite ware affacted by the retirament taet. Fifty parcant of the 1.6 million bencficiariea affactad by the aarninge tant aernad $\mathbf{\$ 2 , 7 0 0}$ or more In 1966.

In ganaral, the OAI program wae found to be prograsalve with reapect to lifatime arninge acrose all model permutatione. The etrength of the negative aasocistion betwean househoid parcantege of redistribution and housahold aarninge varied by marital statua. In particular, the program had atronger prograasive features for single households relative to arried housholds. This finding is not too eurpriaing in light of the extra bencilis extended to wives of covered workert.
b. Service longth (smbm, smach2) For the single models, the coeficicients on sERLRH and sERLEN2 are negetive and poaitive. respectively, and the coefficients for smbin are aignificenty different from zero at a one percent level, but the coefficient for SERLHN2 is statistically significent in model 2 only. The coefficient for gERLEM is remarkably stable across the models, whereas the estimated coefficient IOF 8ERLH2 modestly increases when progra features are addad to the annuity counterfactuals. The estimated negative, nonlipear association between the percentage of redistribution and service length suggests that longer contribution periods significantly reduce the percentage of redistribution received in retirement, ceteris paribus.

The conparable sex-coded estimates for married persons are mixed and statistically insignificant. Again, the estimated coefficients are
remerkably stable acrose survivorship assumptions. However, the coefficiants for the sarvice langth variables SERLEN and SBRLEN cand toward garo whan additional progras faturas are introduced into the annuity counterfactunl.
c. Sax (SEX) The sax variable was included in the single model only. Without mortality differtentials by sex, bencitt indexing, and the earnings test, the coefficient for SEX is negetive and statistically insignificant. However, with the inclusion of sax difterentials in survivorship, the coefficient for SEX is positive and aignificentiy different fron zero at ane parcent level. Further disaggregation of mortality differentials by marital statue, income, and education increased the redistributional gains of single women over single men. As a result of their longevity, women received significant redistributional gains from the OAL progran, ceteris paribus.

Single wowen, also, received further redistributional gains when benefit indexing and survivorship differentials by sex were included in the annuity counterfactual. The addition of the earnings test did not appreciably affect the female-to-male difference in the percentage of redistribution after accounting for bencfit indexing and mortality differentials. Overall, females received redistribution components approximately five percentage points larger than their male counterparts when indexing, post-fetirement earnings adjustments, and mortality differentials by cex were reflected in the annuity counterfactual.
d. Race (RACE) In the case of single households, the coefficient for RACE is small and statistically insignificant, with the
notable exception of models 2 and 4 when benofit indexing and mortality differentials by sex, race, marital status, income, and education were accounted for in the annuity counterfactual. The sign for the RACE coefficient is mixed and dependent on counterfactual characteriatics. Under the assumptions of model 1 , the coefficient for race is positive, suggesting that nonwites received a rediatribution component alightly larger than their white counterparts, ceteris paribus. The alight gains of nonwites are probably syoptomatic of earninge differentials by race prevelent in the labor market. Whites, on average, receive higher carnings relative to nonwhites, concentrating nonwhites at the lower end of the progressive benefit formula. Even with the edjustments for race differentials in mortality, the nonwhite rediatributional gain persisted. This scems to suggest that OAI benefit differentials by race were stronger than mortality differentials by race. Exemining the survivarahip probabilities by race and sex in Table 13.5, it is observed that mortality differentials by race are fairly weak and the sign of the differential reverses at edvanced ages. Generally speaking, however, disasgregated mortality rates reduced the size of the nonwite gain, and oft-times resulted in redistributional losses.

The inclusion of bencfit indexing in the annuity counterfactual and mortality differentials by race and sex reault in estimated coefficients that are negative. Purther disaggregation of mortaliky rates by marital status, income, and education, result in estimated coefficients that are negative and statistically significant. Identical results occur with the addition of the earnings test.

Looking at the married models, the coefficients for RACE are nogative and statistically insignificant except when mortality differentials are disaggragated by sex, race, marital status, income, and education. The negative relationship between rece and houschold percentage of redistribution is strengthened when mortality differentiale by sex and race are included; however, when mortality differentials by sex, race, marital status, income, and education are included, the estimated coofficient for race is positive and statistically aignificant except in model 7. The effect of benefit indexing and the carning test features on the coefficient estimate is dependent on the survivorship assumption; using the gender-warged and sex-race survivorship probabilities, the race differential is weakened with indexing but strengthened with the earning test; however, usiag the socioeconomicadjusted probabilities, the race differential is strengthened with indexing but weakened with the earnings test.

The mixed and contradictory results across married models and across the married and single models are perplexing. One contributing factor for the erratic performance of the race variable is the weak representation of nonwhites in the data set. Monwhites accounted for six percent of the single households and two percent of married households. Clearly, any generalizations based on the size and sign of the estimated coefficients for ract are tenuous and should not be taken too seriously.
e. Age at retirement (RAGBR1, RAGBR2, RAGBR3) Host of the evidence on the age of retirement suggests that single persons received the largest redistributional component by retiring at age 65 , ceteris
peribus. This finding is consistant with earlier mentioned criticiams of the actuarial adjustment formulas.

Looking firat at RAGERI, the variable for retirement prior to age 65, the coefficient for RACER1 uaing the gender-merged survivorship table fa nagative and atatiatically insignificant across all varsions of the generalized aingle model. The incluaion of disaggregated mortality differentials reduces the aize of the negative rediatribution differential for persons who retirad earliar than age 65, and, in some cases, reverses the aign of the redistribution differential. The addition of the benefit indexing teature to the annuity counterfactuala reverses the sign of the coefficient for racirit, whercas the carnings test feature does not significantly affect the alze or sign of the coefficient.

The coefficient for ragrin is negative and statisticsily insignificant for all permutationa of the generalized eingle model. The strongth of the negative relationship decreasee as mortality differentials are disaggregated. Similarly, benefit indexing and earnings test provisions further waken the difference between the redistribution differential for persons retiring between ages 65 and 71 relative to persons retiring at age 65, ceteris paribus.

The last age at retirement variable to be discussed is RAGER3. The coefficient for RAGER3 is negative and significantly different from zero at a one percent level for all single models. The size of the redistributional differential is augmented by mortality rate disaggregation, benefit indexing, and earnings test adjustments, with the
notable exception of model 4 using mortality differentials by sax and race.

Next, looking at the sax-coded age at retirament variables for the married model, the reaults for RAGERI are mixed and atatistically insignificant. Early retirmant for women does not significantly affect the size of the houschold redistribution measure relative to households where the woman retired at age 65 , ceteris paribua. However, the houschold redistribution meaaure is slightly amaller when the woman retired between the agea of 65 and 71 relative to age 65 , ceteris paribua. The size of loss is slighty increased with increased disaggregation of mortality rates and the introduction of benefit indexing, but it is slighty reduced with the carnings test. The last age of retirement variable is RMCRB3. The coefficient for magr3 is positive and significantly different from aero at ane percent level for all models. The strength of the positive relationship is augmented by mortality rate disaggragation, bencfit indexing, and earnings test adjustments. It is not surprising that women who postponed retirament to age 72 or later received abnormally high household redistribution measures. These women were most probably collecting special age-72 benefits, which are provided to aged persons who cannot claim bencfits as atmary worker or dependent spouse and who have very few quarters of coverage; hence, oal benefits were received by these women at a near-zero cost.

The confficiente for _rAGERI and _ RAGER2 are negative and significantly different from zero at one percent level. The strength of the relationship is weakened by mortality disaggregation by sex and
race, but largely unaffected by further socioeconomic diaeggregation. The household rediatribution differential for meles who retired after (before) age 65 increased (decreased) in magnitude with the inclusion of bencfit indexing and earnings teat adjustments in the annuity counterfactual.
f. Retircment cohort (RCOHORT1, RCOHORT2) EaEimates of the coefficiente for RCOHORTI and RCOHORT2 are positive and significantly different from sero at ane percent level for all permutationa of the single and aarried generalised models. Also, the aize of the coefficient for RCOHORTL exceeds the size of the coefficient for RCOHORT2, suggesting that the gaina from retiring in an carlier retirement cohort diminish over time.

Tor the single models, the effect of diasgragated mortality rates are mixed. When mortality differentials disaggregated by sex and race were uned, the catimated cocfficients for RCOHORTI and RCOHORT2 diminish in size, reducing the intercohort redistributional differential. However, further disaggregation places upward presaure on the eatimated size of the RCOHORII and RCOHORT2 coefficients; hence, the intercohort redistributional differential widens. It appears that the earlier cohorte had different educational and incone characteriatics which tended to reverse the influence of sex and race differentials in survivorship on the redistribution measure.

The addition of bencfits indexing and the earnings test to the annuity counterfactual systematically narrows the intercohort redistributional differential, as expected. Since this study evaluates
the OAI program in 1972 and retirament cohorts from 1962 to 1972 are included in the deta set, bencfit levele promised in raal tarma must be augmented ovar the retircmant interval frow 1962 to the year of prosram assassment, 1972. The bancfit adjustmant schome indaxed the initial annuity benafit in the ratirament year by $(1+c)^{t}$, whare $c$ equale .0275 (the annuitiaad rate for future price changea) and equals the difference between the retircment year and 1972. Dacauce of ax poet Indexing, the intercohort zedietributional differential ia narrowad. The narrowing effect of the carnings test feature was also expected since the 1969-1972 retirement cohort had the greatest likelihood of receiving labor carninge in exceas of the carninge limit in 1972, which would plece upward pressure on the eize of leter cohorts' redistribution componente, subsequently nerrowing the redistributional differential ecrose cohorts.

Tor the married modele, similer resulte are obtained for the femalecoded rcohort and mconont2 coefficients. That is, dieagregated mortality differentiala, bencfit indexing, and the earninge teat adjuatmente tended to nerrow the intercohort rediatributional differential. However, the male-coded _RCOHORTI and _RCOHORT2 coefficienta ere invariant to the level of mortality rate disagsregation, but they tended to diminish in size with the addition of bencfit indexing and the earnings test, ceteria paribua.
8. Level of education (EDUL, EDU2, EDU3, EDUA) With the exception of the coefficient for EDDA, the eatimated cocfficients for the education variablea in the single models are generally negative and atatistically insignificant. That is, the redistributional differential
by education level is nagative albeit small for households with lase than eight yeare of aducation or high school training ralative to households with eighth grade education only. The influance of differant mortality rate acsumption are mixed. For householde with lese then eight years of education or more than 12 yaers of education, the inclusion of sex and race differantials in survivorahip tended to either eliminate exiating rediatributional gaine or increase rediatributional losset relative to householde with aighth grade educetione. However, further dieaggregation of mortality ratea by marital atatua, income, and education generally reduced the redistributional gap between housaholde with cight yeart of education and those with 12 or more yeart of education, but expanded the gap between houscholds with eight years of aducation and those with lass than dight years. This reault is reflective of the inverse relationship between mortality and education and income levele. Mortelity disaggregation tonded to eliminate the negative differential between houstholde with 9-11 yeare of education and oight years of education. Purthermore, benefit indexing narrowed the education rediatributional differential. But, the carninge teat tended to widen the differential for houscholds with 0-7 and 12 years of education, wile it narrowed the differential for households with 9-11 and 13 or more yeare of education. The earnings test effect auggests that persons with 9-11 or 13 or more years of education tended to remain in the labor force after retirement. Again, the coefficient estimates for the sex-coded education variables are mixed and generally atatistically insignificant. However, a few general patterns are worth mentioning. For all education groupings
excluding EDUA, the inciusion of sex and race differentiale in survivorship tended to narrow the education redistributional differentials, whereas further disaggragation tanded to improve the redietribution statue of households with any of the following education variablea: EDU2, EDU3, EDU4, EDU3, and EDU4. The inciusion of the earninge tast greatiy increased the positive redistribution differential for males wh college education, while it increased the nagative redietributional differential for houscholds with any of the followng education variablea: EDU1, BDU2, EDU3, and EDU1. Again, these reaules are raflactive of post-retiroment amployment paterns of married houscholde.

GIIL. SUMMARY AND CONCLUSIONS

## A. Sumary

Chapter 1 presented a brief overview of the federal old-age insurance program and the method amployed to isolate the distributional fmpact of the social security program. Also, the four interrelated isaues investigated in this atudy were identified.

Chapter II was a detailed discuasion of the historical development of the OAI program with emphaife on the following progrem features: spousal benefits, progressive benefit formula, sctuarial reduction for early retirement, delayed retireaent credit, carning teat formula, snd cost-of-living edfustments. Eech program feature was explained in terme of its original intent, redistributive effect, and controveralal implicationa, when applicable.

Previous empirical studies on the distributional impact of the social security program were reviewed in Chapter III. Virtually all empirical studies indicate that social security beneficiaries retiring priof to 1975 received above-normal rates of return on their contribution dollars; however, there was less agrcement concerning the progran's progressivity. Empirical evidence did support allegations that the intent of many progras features were compromised by the program's design and deaographic characteristics of the retirement population. While the cited studies differed in detail, the distributional impact measure (be it an internal rate of return, contribution-benefit ratio, or transfer component) was found to be sensitive to specific identifiable morker
cheracteristics, ach es date of retirement, marital statu, sex, race, Income, education lavel, and age at antry and ratiramant, The distributional significance of asch workar charactaristic mas discussed In Chapter III.

A ilfe-cycle model for eveluating the distributional impace of the QAI prograz wes presented in Chapter IV. Two conditiona for an ectuarially fair retirament program were specified, which were subsequentiy used to explain the "disentanglement" of oal bancite along functional ilnea.

Chapter V describes the methodology. The model aaumptions regarding the fairness standard, interest ratea, survivorship probabilicies, carnings cest formule, and behavioral responces were discusced in detail. Also, a description of the data set, computational formulas, annuity-type counterfactuals, and rediatribution components were presented.

The generalized polynomisl regression models by marital status were described in Chapter VI. A generalized model was specified for the purpose of draving inferences regarding the effect of worker and program characteriatice on the distributional impact of the OAI progran. The depandent and independent variables were defined and described in Chapter VI.

Deseriptive statistics, In tabular artay, on the benefit incidence for all households, single households, and married, both retired households and the results of the empirical analysis of this study were presented in Chapter VII. The descriptive statistics indicated that:

1) all family cypes racaived more than their "money's worth" from the OAI program in 1972; 2) single famalea and married couplea were made better off, and aingle malea were made worse off in a sex-neutral retirement program; 3) traditional family atructures received preferential treatment from the OAI program because the dependent spouse received retirament benefits without payment of extra contributiona; 4) dependent'a benefits were equally distributed across quintile groups; and 5) the OAI program tended to be more regressive with the introduction of the earnings test and socioeconomic-adjuated aurvivorah1p ratea.

Evidence from, and interpratation of, the ordinary least-square multiple regression estimation of the polynomial models was presented in Chapter VII. The regression estimates did, in most cases, support the generaliaations derived from the descriptive statistics.

## B. Conclusions

Four interralated issues were addressed in this study: 1) Does the OAI portion of the social security program redistribute income in favor of low-income beneficiaries? 2) Does the current OAl program redistribute bencfits in favor of momen, as a group, at the expense of their mele counterparts? 3) How docs the wife's mork status affect the distribution of OAI bencfits within and across family types? 4) Are spousal benefits distributed principally to needy dependent spouses? Answers to these questions will be presented in this final section.

## 1. Overall prosram essesgment

The resulte presented in Chapter VII sugsest that for OAI bencficiaries the program wae progressive with respect to income. Thus, the program did tend to favor lowincome beneficiaries in terms of the percentage of redistribution. Tabuler results showed that all income groupa receivad more than their "money's worth" from the OAI program in 1972; however, the largeat relative gaina were realized by low-income groups. Using different program acsessment approaches, the OAI prosram In 1972 for the full data set wat found to be "aildiy" and "generally" progressive across income groups, but it also exhibited strong regressive features, resulting in lower relative returne to middie-income bencficiaries.

The progran was found to be more effective in redistributing income in the absence of the carnings teat, price indexing, and diaagsregated survivorship probabilities. First, the earnings test, in general, had its greatest impact on high-income failies ( $\$ 6,000+$ ), which tended to increase the percentage of redistribution received by high-income families. According to the design of this study, the OAI program was found to be more regressive after the carnings test feature was included finto the analyais. second, at least initially, all income classes received larger redistribution components when the annuity counterfactual was defined to include price indexing. Although all income groups realized extra redistribution per dollar of OAI benefits when indexing was included in the analysis, the greatest relative gains were realized by higher income groups because of their longer life expectancies on
average. Price indexing, itself, does not alter the redistribution pattern, although it does silghty affect the levela of progressivity and regreseivity ac measured by the "high-income-group-comparison" approach to progreacivity ascessment. In addition to the aforamentioned program features, demographic factore, such st differential survivorship probabilities, do have an unintended effect on the equity of the program. Based on tabular reaults for the lull data set, the progran's overall progreasivity wa lound to be virtually invariant to the use of gender= merged or sex-racedistinct survivorship probabilities; however, sifhe progreasivity changes were obeerved with the use of sociocconomicadjusted survivorship probabilities. Specilically, the program had alightiy wakened progressive leatures for low-income households and slighty serengthened regressive features for middle-income houscholds when socioeconomic differentials in survivorship ware incorporated into the counterfactual design.

The tabular results for the full data set are largely supported by the regression resules. However, two caukionary notes should be mentioned regarding any direct comparisons between tabular and regression findings. First, the tabular and regression findings are based on different groupings of the same retirement population. That is, the cabular results discussed above were based on the full data set including single households and married houscholds where at least one member of the couple was retired in 1972. On the other hand, the regression results are based etther on the single household or married households where both members were retired in 1972. Because of the different groupings, the
resulte may appear to be contradictory when taken together, although, when taken separately, they are consiatent with apriori reasoning. Second, the measures of income are different for the tabular and regression analyses. The tabular rasults were arrayed by fanily income in 1972, as reported on the 1973 census questionalire. The regression reaults are based on lifetime carnings, a amary statistic representing the accumulated value of annual taxable real carnings for the household unit. Each earnings measure has obvious shortcomings and wae used to achieve different ends. The tabular results are directly comparable with Burkhauser and Warlick's (1981) presentation, whereas the regression results are directly comparable with Freiden at al. (1976). Hence, the carnings measures, while complicating comparisons within the study, are perfectly ueeful across provious atudies.

The regression results support the findings of the progran's progressivity. Recall, the estimated relationship between the percentage of redistribution and lifetime carnings (LTEAR or FLTEAR) was negative and nonlinear. The effect of the carnings test was mixed and dependent on marital status. The progressivity of the program was weakencd for the married data set and strengthened for the single data set with the inclusion of the carnings test in the annuity counterfactual. Evidently, the "married" influence of the earnings cest dominated when the data were aggregeted in the tabular results. Similarly, in all of the single married models, the OAI program was less progressive when the counterfactual included bencfit indexing. The inclusion of disaggregated survivorship probabilities did not reverse the relationship between the
percentage of redistribution and lifetime carnings, and, in addition, the marginal effect, ovarall, was small. From the regression findings, mortality rates disaggregated by sex and race challenge the program's progressivity alighty less than highly disaggregated mortality rates. Contrary to Aaron's study (1974), the effect of socioeconomic differentials in survivorship does not reverse the direction of redistribution, but, rather, slightly "dampens" the extent of redistribution.

## 2. The effect of sex differentials in survivorship on the prorrem's performance

The distributional impact of the OAI program was found to be sensitive to the "tailoring" of annuity benefits to reflect sex differentials in survivorship. Generally speaking, single females and married couples were made differentially better off, and single meles worse off in a sex-meutral retirement system relative to a sexdiscriminating actuarially fair retiroment system. Single fomale beneficiaries, as agroup, received annuity benefits that were approximately 16 percent larger in a sex-neutral retirement system relative to a sex-race discriminating system, whereas their male counterparts, as a group, received benefits that were approximately seven percent smaller. Furthermore, when the mortality differentials were disaggregated by sex, race, marital status, income, and education, single female beneficiaries received annuity benefits that were approximately nine percent larger in a sex-neutral retirement system, whereas single
male beneficiaries received benefits that were approximately 23 percent smaller.

Similar comparisons were not as useful across married bencficiaries because the joint-and-two-thirds annuity covered the lives of the husband and wife; hence, any sex differentials were largely muted by the dual coverage. Nonetheless, actuarially fair bencfits for married persons were approximately three percent higher, independent of the sex of the primary annuitant, in a sex-neutral retirement syatam relative to aex discriainating system. The sex-neutral bias in favor of married persons, as a group, is a result of the joint-and-two-thirds annuity, which insures the life of the shorter-lived male, the longer-lived female, and the longest-lived survivor, who is typically the femele. The sex-neutral blas increased when the sociocconomic discriminating aystem was used as the comparison system.

The estiated coefficient for SEX in the single generalized model was positive and statistically significant, supporting the tabular findings. Single fomale beneficiaries received redistribution components approximately three percentage points larger than their male counterparts when survivorship probabilities were disaggregated by sex and race, ceteris paribus. The marginal gain increased to 5.2 percentage points when survivorship probabilities were further disaggragated by marital status, income, and education.
3. The effect of the wifa's work status on the program parformance

The influence of the wife's work atatua was examined extensively in section A of Chapter VII. To address this issue, householda, where both members were retired in 1972, were divided into one-aarner and two-earner houscholds. A Ewo-earner household was defined as a household where both members qualified for primary-worker bencitis. Alternatively, a one-earner houschold meant only the male member qualified for primaryworker benefits and the spouse was collecting dependent's benefits. Independent of sex and family type, all individuals received positive income tranafert from the OAI progras in 1972. Ovarall, the traditional fanily structure received preferential treatment from the OAI program because the nonworking wife received retirement bencita without payment of extrs contributions.

Pirst, the effect of the wife's work statua on wife-only benefit Incidence was small. In absolute terms, working women paid in more dollars in the forw of OAI contributions, and, in axchange, they received higher oal benefit levels. However, the difference in percentage of rediatribution per dollar of OAI benefits for working and nonworking women was extremely small, suggesting that women, independent of work status, were treated alsost equally in terms of redistribution.

The finding of roughly equal treatment across women with different labor-homemaker choices did not apply to men married to women with different laborhomemaker choices. Cenerally speaking, the percentage of redistribution was generally higher for males in one-earner households relative to their male counterparts in two-earner households. The
apparent redistributional differential was aymptoasic of the vary low annuity bencfits recaived from the nonworking wife's joint-and-two-thirds annuity.

In concluaion, although women with different work atatuees peid in different amounts of OAI contributions, thay ware treated roughly equally in tarms of the percentage of oal benefits reprasenting intergenerational transfors. The radiatribution pattern for malea by houcehold type wae eimilar; however, the aboolute aize of the percentage of redistribution wea larger for one-arner males acroas all Income categories. While women were ereated roughly equally, working women received aignificantly smaller percentage of rediatribution when comparisons ware made with working males. The working women received the saalleat return on her 0al contributions relative to her male counterpart because of her retirement and employment characteriatice and the community property aeaumption underpinning the annuity-type counterfactual. Leatly, the oal program was found to be more progressive and leas regressive across income categories for two-earner relative to one-earner households as refiected by the "high-income-group-comparison" approsch ko progressiviky assesement.

## 4. The diatribution of spousal bencfics

The OAI program was found to allocate redistribution components projortionately across quintile groups, indepondent of family type and sex. Contrary to the 1937-1939 Advisory Council's intent, dependent's benefits were, at best, proportionally distributed to dependent spouses
of male workers. Twanty-Ewo of the poorest one-earner households received approximately 21 percent of intergenerational transfers to dependent epousea compared to 21 parcent recelved by the 20 percent of the richest oneararner householde. Evidence from this lifeacyele study supporte the arlier findinge of Holden (1979). In concluaion, this study damonatrated that applemental bencifta may not be adequately serving the 1939 objective of protecting a group of aged persons experiencing economic hardehip, suggesting, perhaps, that a wore effactive target definition should be used to determine "naed" aside from the work status of the female, which is currently used by social security.

## C. Concluding Remark

This atudy actomped to estimate the extent to which the old-age insurance portion of the social security progran radistributed income among subgroups comprising the same retirement population but distinguishable by socioeconomic traits, such as sex, race, marital statue: income and education. In estimating the distributional impact of the social security program, the study stressed the importance of an Intertcmporal framenork to evaluate a "lifetime" public progran and the need to account for demographic factors, such as differential mortality rates.

Overall, the 1972 OAI progan was found to be progressive; however, "other" progras features and soctoecononic status were also found to influence the effectiveness of the progras in achieving its
redistribution objective. From a policy point of view, this atudy has several noteworthy implications. First, euidence from this atudy showed that the OAI program, as legislated in 1972, was not distributionally neutral, and ita diatributional impact oft-times depended on factors incidental to the program. Second, the legislated preferential treatment of women, traditional family structures, and earlior retirament cohorts drav into quastion and challenge the redistribution objective of the oal program. Thitd, it was found that the intended and actual effects of atatutory proviaiona may vary widely and may, as a reault, jeopardize the effectivencss of the program in general. In the future, policymakers should be cognizant not only of the intended and actual affects of statutory provistons, but also of the unintended effects of denographic factors, incidental to the program, on the overall equity of the social security syatem.

## 1X. REFERENCES

Aeron, Henry J. "Demographic Effacte on the Equity of Social Security Eenefite." Nashington, D.C.: The Erookinge Inetitute, April 1974.

Antonovsky, Aaron. "Social Clase, Life Expectancy and Overall Mortality." In Patiante, Physicians and Illnace. Edited by E. Gartly Jaco. Naw York: Pree Prass, 1972.

Axis, Faye, Kilss, Beth, and Scheuren, Frederick. 1973 Current
Population Survay-Adminiatrativa Racord Exact Macch File Codebook, Part 1. Studias from Intaragency Date Linkages, Raport ko. 8 (1978). U.S. Departmant of health, Education, and Welfare, Social security Adminiatration, HLM Publication Mo. 79-11750.

Bayo, Pranciaco. "Hortality of the Aged." Tranaections of the Society of Actuariea 24 (March 1972): 1-24.

Bixby, Lanore E. "Momen and social Security in the United statas." Social Security Bulletin 35 (September 1972): 3-11.

Board of Covernors of the Federal Resarve Syatem. Bankine and Monetary Statiatics, 1900-42. Nashington, D.C.: Mational Cepital Prese, - 1963.

Board of Covernors of the Tederal Resarve system. Bankins and Manetary statiatics, 1941-1970. Washington, D.C.: Government Printing Ofice, 1976a.

Board of Covernors of the Federal Reserve Syatem. Annual statiatical Digeat, 1971-1975. Maohington, D.C.: Government Printing Office, 19766.

Boakin, Kichael. "The Economice of Labor Supply." In Income Kaintenance and Labor Supply, pp. 163-180. Edited by Glen Cain and Harold Wetes. Wow York: Academic Prese, 1973.

Boskin, Micheel. "Social security and Retirement Deciaions." Eeonomie Inquiry 15 (Jenuary 1977): 1-15.

Brittain, John A. "The Incidence of social Security Payroll Taxes." American Economic Review 61 (March 1971): 110-125.

Brittain, John A. The Payroll Tax for Social security. Washington, D.C.: The Brookings Institute, 1972a.

Brittain, John A. "The Incidence of Social security Payroll Taxes: Reply." American Economic Review 62 (September 1972b): 739-742.

Browning, Edgar K. "Labor Supply Distortions of Social Security." Southern Economic Journal 42 (October 1975): 243-252.

Burkhausar, Richard V. "Are Women Treated Fairly in Today's Social Security System" Gerontoloriat 19 (1979): 242-249.

Burkhauser; Richard V. "The Early Aceoptance of Social Security=an Aeat Maximisation Approach." Induatrial and Lebor Relations Reviaw 33 (July 1980): 484-492.

Burkhauser, Richard V., and Holden, Karen C., eds. A Challenge to Social Security: The Chaneins Roles of Women and Men in American Society. New York: Acedcilc preat, 1982.

Durkhauser, Richard V., and Quinn, Joseph. "The Effect of Changes in Mandatory Ratiremant Rules on the Labor Supply of Older Norkers." Vanderbilt University, Department of Economice Working Paper No. 81N01, 1981.

Burkhauser, Richard V., and Turner, John A. "A Time Series Analyaia of Social security and its Effect on the Market Work of Prime Age Man." Journal of Political Economy 86 (Auguat 1978): 701-715.

Durkhauser, Richard V., and Warlick, Jennifer L. "Dieentangling the Anauity from the Redistributive Aspects of social security in the United states." The Roview of Income and Wealth 27 (December 1981): 401-421.

Cain, G1en G. Married Women in the Lebor Porce: An Economic Analysis. Chicsen: University of Chicseso Press, 1966.

Campbell, Colin D., and Campbell, Rosemary C. "Cost-Eenefit Ration Under the Federal 01d-Age Insurance Program." old Ase Income Asaurance, Compendium of Papers on Problems and Policy Issues in the Public and Private Pension System, Part III: Public Proseras 72-84. 90th Consress, first session. Washington, D.C.: Government Printing Office, 1967.

Campbell, Rita Ricardo. "The Problems of Fairness." In Crisis in Social Securiky: Problems and Prospects, pp. 125-145. San Prancisco: Institute for Contemporary 8tudies, 1977a.

Campell, Rita Ricardo. Social security: Promise and Reality. 8tanford: Hoover Institution Press, 1977b.

Chen, Yung-Ping, and Chu, K. W. "Tax-Bencfit Ratios and Rates of Return under OASI: 1974 Retirees and Entrants." Journal of Risk and Insurance 41 (June 1974): 189-206.

Danziger, Sheldon. "Income Redistribution and Social Security: Further Evidence." Social Service Reviev 51 (Karch 1977): 179-184.

Danziger, Sheldon, and Plotnick, Robert. "Demographic Change, Government Transfers and Income Diatribution." Monthly Labor Review 100 (April 1975): 7-11.

DelBene, Linds. 1973 Current Population Survey Administrative Record Exact Match File Codebook, Part II. Studies From Interagency Data Linkages, Report No. 9 (1979). V.S. Department of Health, Education, and Welfare, Social Security Administration, S8A Publication Mo. 13-11750.

Derthick, Marthe. Policymakinefor Social Security. Washington, D.C.: The Brookings Institute, 1979.

Feldstein, Martin 8. "The Incidence of the Social Security Payroll Tax Coment." Americen Economic Review 62 (September 1972): 735-738.

Feldatein, Mertin 8. "Soeial Security, Induced Retirement and Agsregate Capital Accumulation." Journal of Political Economy 82 (septeaber/October 1974): 905-926.

Freiden, Alan, Leimer, Dean, and Hoffman, Ronald. "Internal Rates of Return to Retired Norker-Only Beneficiaries under social security, 1967-70." Studies in Income Distribution Ko. 5 (October 1976). U.S. Department of Health, Education, and Wolfart, Social security Administration.

Treidman, Joseph, and 8jogren, Jane. "Assets of the Elderly as They Retire." Social Security Bulletin 44 (January 1981): 16-31.

Garfinkel, Irwin, and Kasters, stanlay H. Estinatins the Labor supply Effects of Income Maintenance Alternatives. New York: Academic Press, 1977.

Gove, Walter R. "Sex, Marital status, and Mortality," American Journal of sociolosy 79 (July 1973): 45-67.

Gujarati, Damodar. Basie Econometrics. Mew York: KeGraw hill Book Co., 1978.

Hamermesh, Danicl 8. "Mew Estimates of the Incidence of the Payroll Tax." Southern Economics Journal 45 (Aprit 1979): 1208-1217.

Holden, Karen C. "Spouse and Survivor Benefits: Distribution Among Aged Women." Research on Asing 1 (September 1979): 302-319.

Homer, Sidney. A History of Interest Rates. New Brunswick, Mew Jersey: Rutgers University Press, 1963.

Jordon, Chester Wallace, Jr. Society of Actuaries' Textbook on Life Continencies. Chicago: The Society of Actuaries, 1975.

Kilse, Beth, and Scheuren, Frederick J. "The 1973 CPS-IRS-8SA Exact Match Study." Social Security Eulletin 41 (October 1976): 14-22.

Ritagawa, Evelyn M., and Hauser, Philip M. Differential Mortality in the United stakes. Cambridge: Harvard Univeraity Press, 1973.

Lempran, Robert J. Ends and Means of Raducins Income Poverty. Chicago: Markham, 1971.

Leimer, Dean R. "Identifying Ristorical OA1, SI, and DI Tax Rates Under Alternative Program Definitions." Washington, D.C.: Social Security Administration, Fabruary 1976.

Leimer, Dean R. "Projected Ratea of Return to Puture Social Security Retirees Under Alternative Bencfit Structures." In Policy Analyais with Social Security Rescarch Files, Pp. 235-268. U.8. Department of health, Education, and Nelfare, Social Security Adminiatration, Reacarch Report Mo. S2, HEW Publication Ho. (S5A) 79-11808, 1978.

KacRae, C. Duncan, and MacRae, Elizabeth Chase. "Labor Supply and the Payroll Tax." American Economie Reviev 66 (June 1976): 408-409.

Metropolitan Life Insurance Company. "Socioeconomic Mortality Differentials." seaciseical Bulletin (January 1975): 54-56.

Munnell, Alicia H. "The Impact of Social Security on Personal Savings." Mational Tax Journal 27 (December 1974): 553-567.

Murray, Janct. "Himeowarahip and Financial Assets: Findings from the 1968 Survey of Aged." Social Security Bulletin 35 (August 1972): 3-23.

Hyers, Robert J. "United States Life Tables for 1969-71." Transactions of the society of Actuaries 28 (1976): 93-116.

Hyers, Robert J., and Bayo, Trancisco. "Mortality of Workers Entitled to Old-Age Benefits Under OASDI." Tranactions of the Society of Actuaries 27 (1965): 416-431.

Mational Center for Health statistics. Life Tables for 1959-61. Washington, D.C.: Public Health Services, 0.S. Department of Heelth, Education, and Welfare, 1964.

Okonkwo, Ubadigko. "Intragenerational Equity Under Social Security." Washington, D.C.: International Monetary Fund, March 1976.

Ozawa, Martha N. "Individual Equity Versua Social Adequacy in Federal 01d-Age Ineurance." Social Security Reviev 48 (March 1974): 2438.

Parsona, Donald O., and Munro, Douglae R. "Intergenerational Transfare in social security." In Criais in Social Security: Problema and Proppect, pp. 65-86. San Francisco: Institute for Contemporary studies; 1977.

Pechman, Joseph A., Aaron, Menry J., and Taussis, Michael K. Social Security Perapectives for Reform. Washington, D.C.: The Brookings Inseitute, 1968.

Pellechio, Anthony J. "Social Security and Retirement Behavior." Ph.D. dissertation. Departmant of Economics, Harvard University, 1978.

Pindyek, Robert 8., and Rubinfeld, Daniel L. Econometric Models and Economic Torecaste, 2nd edition. New York: KeGraw-lill Eook Co., 1981.

Samuelson, Paul A. "An Exact Consumption-Loan Model of Interest With or Without the Social Contrivance of Money." Journal of Political Econow: 66 (Decomber 1958): 467-482.

Scheuren, F. J., and Tyler, s. "Matehed Current Population Survay and Social Security Data Bases." Public Data Use 3 (July 1975): 7-10.

Sherman, sally R. "Assets on the Threshold of Retirement." Social Security Eulletin 36 (August 1973): 3-17.

### 0.8. Bureau of the Census. Historical Statistica of the United states Colonial Timea to 1957. Washington; D.G.: Government Printins Ofice, 1960.

0.8. Burcau of the Census, Bistorical statistics of the United states
Colonial Times to 1970, Part 2. Washington, D.C.: Government
Printing Oftice; 1975.
U.8. Department of Health, Education, and Welfare. Social Security Administration. Social securiky Bulletin: Annual statistical Supplement, 1972. Wachington, D.C.: Government Printing Office, 1973.

### 0.8. Department of Bealth, Education, and Welfare. Social security Adainistration. Social securiky Handbook, Sth edition, 1973. Washington, D.C.: Government Printing Office, 1974.

U.8. President. Economic Report of the President. Washington, D.C.: U.S. Government Printing Office, 1976.

Vroman, Waye. "Employer Payroll Taxas and Monay Wage Bahavior." Applied Economice 6 (September 1974): 189-204.

## X. ACKNOWLEDGMENTS

First and foramost, I would like to axtend my deepest gratitude to Dr. Charles Mayer for his excellent supervision and guidsnce, "on-call" consultation, and endless patience and kindness. My educational experiance has been greatly enriched by Dr. Meyer's knowledge of economics and the social security program and his ettentiveness to details. Moreover, his diplomatic skills and understatedness were indispensable (given my predisposition to stubbornness) and personally insigheful.

In addition, 1 am also indebted to my comittee members for their constructive criticism, helpful sugsestions, and guidance. Tirst, thanks are due to Dr. Dennis 8tarleaf and Dr. Dudley Luckett for their monetary expertise and resourcefulness. Their guidance opened my eyes to the ondless (or at least seemingly ondless) sources of monetary statistics. Credit and thanks are also due to Dr. J. Peter Kattila and Dr. Pred Lorenz for their exceedingly helpful statistical assistance and advice.

This project could not have been completed without a lot of financial and technical assistance from many specialists. First, for financial assistance, I would like to extend a BIG thanks to the economics department, in general, and Mr. Wes Ebert, Dr. Raymond Beneke, and Dr. Dennis Starleaf, in particular. In spite of cost minimization efforts, this project managed to keep the computer running and Mr. Ebert signing and sighing. I greatly appreciate the department chairperson's personal and financial support of this study. For technical assistance,

I would like to express my personal appreciation to numerous persons: to Mr. Mark Movic of Banker's Life, for his actuarial expertise and many suggestions on the annuity formulas; to Mr. Bud Meader of the Stacistical and Numerical Analysis lab, for his personal approval of computation work to be conducted by employees of the Stat Lab; to Ms. Leann Crowder of the Staeiseical and Numerical Analysis Lab, for her superior computer programming and conscientiousness; to Mr. Fred Rulting of the Statistical and Kumerical Analyais lab, for his programaing assistance and diligence; and to Ks. Diana Mclaughlin, for her excellent typing and proofreading skills.

A very special thanks is extended to my father who, by example, taught me two guiding principlest 1) whatever you choose to do in life, select wisely and strive to do your best; and 2) persevere, relentlessly, uncil the job is done "right." This dissertation is a credit to him and his principles. For unfaltering friendship, I thank Dee Stupp-Hurst, Glanda Haskell, and Gay Hunsberger. Por loving support and attentiveness, I foadly thank Lenore and Jack Heimforth. And, most of all, I profucely thank my husband and cheerful rower, Keith, for surrounding me with the manifold blessings of affection, Eriondship, ondless love, trust, humor, and happiness.

Heedless to say, I would not have been able to complete this study nor enjoy its tedious progression without all these people. I thank you one and all!

## XI. APPLADDIX A. EsTiMATIOM of market yizlds on U.S. coveramint securities at cohstait MATURITY, 1937-1952

The roll-over compounding scheme was estimated using a historical series of market yields on $\mathbf{U} .3$. sovernment securities at constant maturity. Yields are reported on 1, 3, 5, 10, 20 and 30 year maturities for the 1953 to 1972 time period (Doard of Covernors, 1976b); however, disastresated data were not available for arlier yaars. For the years prior to 1953, the wissing yields were estimated using known yields on 35 year taxable U.S. notes, 1937-1970 (Board of Governors, 1943; U.S. President, 1976), and historically complete series of basic yielde on corporate bonds by term to maturity (Board of Covernors, 1943, 1976a). The private bond yield curve lor each maturity in conjunction with the 35 year taxable note series wre used to replicate the yield curver for U.8. sovernment securities for the missins years. The procedure employed to complete the series is discussed in detati below.

Firstly, the basic yields on corporate bonds are reported at oneyear maturity intervals for corporate bonds with ten or fower years to maturity. A 3-5 year yield series for prime corporate paper for 1937 to 1970 was constructed by taking an arithnetic average of the three-year and fiveryear yields for each year between 1937 and 1970. The 3-5 year yield for each year, 3-5 EMY, is represented by

$$
\begin{equation*}
3-5 \mathrm{PHX}_{y}=\frac{3-y e a r ~ P M X_{y}+5-y e a r ~ P M Y}{y} \tag{11.1}
\end{equation*}
$$

where FHY y prime market yield in year $y$. The $3-5$ FMY was used as a standard of comparison to simulate the yield curves for 0 . S. government securities at constant maturity for the missing years.

Next, yields on U.S. government securities at constant maturitics were calculated as follows:

$$
\begin{equation*}
G Y_{y}^{1}=(3-5 \text { GMY }) \times \frac{P M X_{y}^{1}}{3-5 P M Y_{y}} \tag{11.2}
\end{equation*}
$$

where Gny $_{y}^{i}$ = estimated U.S. government security market yield at maturity 1 in year $y$, 1 - years to maturity ( $1,3,5,10,20,30$ ),

3-5 $\mathrm{CMy}_{\mathrm{y}}=$ yield for $3-5$ year taxable 0.8 . securities for year y , and
PHY ${ }^{1}=$ yield on prime corporate bond at maturity in in year $y$. The estimated market yields are shown in Table 11.1.

The eccurecy of the above cetimation procadure was teated by coaparing the known U.S. government security ylelds to the estimated yields for the 1953-1972 time period. Comperisons are shown for the 5, 10, and 20 year maturities in Table 11.2. The size of the estimation error is less than five percent for most maturities and years. Estimation errors are largest in years 1954, 1958, and 1959. However, the catimation error is smaller than the orror resulting from the use of the priae corporate bond yield in place of the U.8. government eecurity rate (see Figure 11.1).

Table 11.1. Market yields on U.S. government securities at constant maturity, 1937-1972 (percent per annum)

| Year | 1 -year | 3-year | 5-year | 10-year | 20 -year | 30-year |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1937 | 0.66 | 1.19 | 1.60 | 2.27 | 2.76 | 2.94 |
| 1938 | 0.41 | 0.72 | 0.94 | 1.24 | 1.39 | 1.43 |
| 1939 | 0.26 | 0.50 | 0.93 | 0.96 | 1.17 | 1.21 |
| 1940 | 0.19 | 0.42 | 0.58 | 0.90 | 1.17 | 1.24 |
| 1941 | 0.29 | 0.61 | 0.85 | 1.34 | 1.77 | 1.88 |
| 1942 | 0.875 | 1.33 | 1.59 | 1.93 | 2.46 | 2.46 |
| 1943 | 0.75 | 1.22 | 1.45 | 1.96 | 2.47 | 2.47 |
| 1944 | 0.79 | 1.21 | 1.44 | 1.94 | 2.48 | 2.48 |
| 1945 | 0.81 | 1.07 | 1.29 | 1.60 | 2.37 | 2.39 |
| 1946 | 0.82 | 1.04 | 1.26 | 1.80 | 2.25 |  |
| 1947 | 0.92 | 1.19 | 1.45 | 1.83 | 2.11 |  |
| 1948 | 1.34 | 1.54 | 1.72 | 2.14 | 2.30 |  |
| 1949 | 1.24 | 1.37 | 1.49 | 1.8 | 2.03 |  |
| 1950 | 1.2 | 1.40 | 1.61 | 1.94 | 2.09 |  |
| 1951 | 1.81 | 1.89 | 1.97 | 2.12 | 2.30 |  |
| 1952 | 2.13 | 2.13 | 2.13 | 2.13 | 2.24 |  |
| 1953 | 2.14 | 2.47 | 2.65 | 2.85 | 3.06 |  |
| 1954 | 1.05 | 1.63 | 1.99 | 2.40 | 2.64 |  |
| 1955 | 2.04 | 2.47 | 2.65 | 2.82 | 2.90 |  |
| 1956 | 2.99 | 3.19 | 3.20 | 3.18 | 3.14 |  |
| 1957 | 3.62 | 3.98 | 3.69 | 3.65 | 3.54 |  |
| 1958 | 2.27 | 2.84 | 3.06 | 3.32 | 3.48 |  |
| 1959 | 4.24 | 4.46 | 4.46 | 4.33 | 4.13 |  |
| 1960 | 3.63 | 3.98 | 4.09 | 4.12 | 4.06 |  |
| 1961 | 2.98 | 3.54 | 3.75 | 3.88 | 3.92 |  |
| 1962 | 3.10 | 3.47 | 3.70 | 3.95 | 3.99 |  |
| 1963 | 3.36 | 3.67 | 3.83 | 4.00 | 4.05 |  |
| 1964 | 3.85 | 4.03 | 4.07 | 4.19 | 4.19 |  |
| 1965 | 4.14 | 4.22 | 4.25 | 4.28 | 4.27 |  |
| 1966 | 5.20 | 5.23 | 5.10 | 4.92 | 4.77 |  |
| 1967 | 4.88 | 5.03 | 5.11 | 5.07 | 5.01 |  |
| 1968 | 5.69 | 5.68 | 5.69 | 5.65 | 5.45 |  |
| 1969 | 7.12 | 7.02 | 6.93 | 6.67 | 6.33 |  |
| 1970 | 6.90 | 7.29 | 7.38 | 7.35 | 6.86 |  |
| 1971 | 4.88 | 5.65 | 5.99 | 6.16 | 6.12 |  |
| 1972 | 4.96 | 5.72 | 5.98 | 6.21 | 6.01 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

${ }^{3}$ Board of Governors, 1976 b .

Table 11.2. Estimation error

| Year | $\begin{aligned} & \text { 5-year } \\ & \text { estimation } \\ & \text { error } \end{aligned}$ |  | $\begin{gathered} \text { 10-year } \\ \text { eatimation } \\ \text { error } \end{gathered}$ |  | 20-year cetimation error |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 0.06 | $(2.3)^{\text {a }}$ | 0.14 | $(4.9)^{\text {a }}$ | 0.19 | (6.2) ${ }^{\text {a }}$ |
| 1954 | 0.15 | (7.5) | 0.45 | $(19.0)$ | 0.53 | (20.0) |
| 1955 | 0.12 | (4.5) | 0.22 | $(7.8)$ | 0.15 | (5.2) |
| 1956 | 0.01 | (0.3) | -0.11 | $(3.5)$ | -0.27 | (8.6) |
| 1957 | 0.07 | $(1.9)$ | 0.03 | $(0.8)$ | -0.08 | (2.3) |
| 1958 | 0.16 | (5.2) | 0.33 | $(10.0)$ | 0.38 | (10.9) |
| 1959 | 0.09 | $(2.0)$ | -0.30 | (6.9) | -0.59 | (14.3) |
| 1960 | 0.14 | $(3.4)$ | 0.29 | $(7.0)$ | 0.27 | (6.7) |
| 1961 | 0.01 | (0.3) | -0.12 | $(3.0)$ | -0.22 | $(5.6)$ |
| 1962 | 0.02 | (0.5) | -0.01 | (0.3) | -0.08 | $(2.0)$ |
| 1963 | -0.04 | (1.0) | -0.06 | $(1.5)$ | -0.15 | (3.7) |
| 1964 | -0.03 | (0.7) | -0.01 | $(0.2)$ | -0.07 | (1.7) |
| 1965 | -0.01 | (0.2) | -0.02 | (0.5) | -0.03 | (0.7) |
| 1966 | -0.01 | $(0.2)$ | -0.19 | (3.9) | -0.18 | $(3.8)$ |
| 1967 | 0.04 | (0.8) | 0.05 | (1.0) | 0.19 | (3.8) |
| 1968 | 0.1 | (1.8) | 0.12 | (2.1) | 0.08 | (1.5) |
| 1969 | 0.08 | (1.1) | -0.18 | (2.7) | -0.25 | (3.9) |
| 1970 | -0.01 | (0.1) | 0.05 | (0.7) | -0.07 | (1.0) |

Error as a percentage of the known yield to maturity on U.S. government securities in esch year.


Figure 11.1. Comparison in five-year estimation errors: Estimated U.S. yields relative to known yields for 1953-1970 and corporate bond yields relative to yields on U.S. security yields for 1953-1970

The data cet ueed in thia study is a absample of the 1973 Exact Match File, a nationally reprecentative sample of all Americana in 1972. A reapondant in the Match file was included in the aubaample if the or he was a "good match," 62 or older in 1972, and received social cecurity benefita in 1972. Two data eeta mare constructedy aingle and married.

The aingle data set included 353 reapondantas 138 malea ( 39 percent of all aingle reapondente) and 215 famalea ( 61 percent of all aingle rapondente). There are 2,771 couples included in the married data eet, where at least one mamber of the couple catisfied the sorting critaria. The total number of respondents included in the atudy wes 5,895. The following tables dacribe the characteriatica of the data sets.

Table 12.1. Summary statistica

| Totel population | 5,895 |  |
| :---: | :---: | :---: |
| Marital status |  |  |
| Married | 3,542 | (94\% of sample) |
| Single | 353 | (6\% of sample) |
| Race |  |  |
| White | 5,643 | (96\% of sample) |
| Nonwhite | 252 | (4\% of sample) |
| Man |  |  |
| Total | 2,909 | (49\% of sample) |
| Marital atatua |  |  |
| Married | 2,771 | (95\%) |
| Stingle | 138 | (5\%) |
| Median age |  |  |
| White | 69 |  |
| Monwhite | 69 |  |
| Single |  |  |
| White | 69 |  |
|  |  |  |
| Nomen |  |  |
| Total | 2,986 | (51\% of sample) |
| Marital statue |  |  |
| Married | 2,771 | (93\%) |
| Single | 215 | (7\%) |
| Median age Married |  |  |
| White | 66 |  |
| Honwhite | 61 |  |
| Single |  |  |
| White | 70 |  |
| Honwhite | 69 |  |

Table 12.2. Age diatribution by rece, marital status, and sax

| Race, marital status, and sax | Age in 1972 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lese than | 62-64 | 65 | 66-72 | $\begin{aligned} & \text { More than } \\ & \hline 2 \end{aligned}$ | Totel |
| White |  |  |  |  |  |  |
| Married |  |  |  |  |  |  |
| Men | 50 | 282 | 197 | 1,344 | 783 | 2,656 |
| Women | 610 | 512 | 174 | 1,035 | 325 | 2,656 |
| Monmarried |  |  |  |  |  |  |
| Man | 0 | 18 | 13 | 64 | 33 | 128 |
| Women | 0 | 13 | 12 | 125 | 53 | 203 |
| Renuhite |  |  |  |  |  |  |
| Married |  |  |  |  |  |  |
| Man | 1 | 15 | 8 | 60 | 31 | 115 |
| Nomen | 60 | 12 | 4 | 32 | 7 | 115 |
| Monmarried |  |  |  |  |  |  |
| Men | 0 | 2 | 0 | 7 | 1 | 10 |
| Women | 0 | 5 | 0 | 4 | 3 | 12 |
|  | 721 | 859 | 408 | 2,671 | 1,236 | 5,985 |

Table 12.3. Year of retirement diatribution by marital statua, sox, and age

| Marital status. sex, and age | Year of retirement |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973+ | Total |
| $\begin{aligned} & \text { Nonmarried men } \\ & 62-64 \\ & 65 \\ & 66-72 \\ & 73 \text { and over } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 11 | 6 | 0 | 20 |
|  |  | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 1 | 3 | 2 | 0 | 13 |
|  |  | 1 | 1 | 10 | 7 | 7 | 14 | 7 | 9 | 7 | 4 | 4 | 0 | 71 |
|  |  | 8 | 7 | 4 | 5 | 4 | 1 | 3 | 1 | 0 | 0 | 1 | 0 | 34 |
|  |  | 9 | 8 | 14 | 12 | 11 | 15 | 12 | 15 | 11 | 18 | 13 | 0 | 138 |
| Nommarried women |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 62-64 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 7 | 5 | 0 | 18 |
| 65 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 3 | 4 | 0 | 12 |
| 66-72 |  | 5 | 8 | 7 | 9 | 19 | 15 | 24 | 13 | 14 | 10 | 5 | 0 | 129 |
| 73 and over |  | 21 | 4 | 6 | 9 | 10 | 3 | 2 | 0 | 0 | 1 | 0 | $0$ | 56 |
|  |  | 26 | 12 | 13 | 18 | 29 | 18 | 26 | 15 | 23 | 21 | 14 | $0$ | 215 |
| Narried men |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $61<$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 51 |
| 62-64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 88 | 113 | 28 | 297 |
| 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 26 | 25 | 74 | 1 | 205 |
| 66-72 | 0 | 30 | 46 | 82 | 124 | 179 | 187 | 235 | 181 | 139 | 126 | 66 | 9 | 1,404 |
| 73 and over | $210$ | 204 | 116 | 82 | 54 | 42 | 34 | 30 | 15 | 9 | 8 | 1 | 9 | 814 |
|  | 210 | 234 | 162 | 164 | 178 | 221 | 221 | 265 | 275 | 242 | 247 | 254 | 98 | 2,771 |
| Married momen |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $61<$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 670 | 670 |
| 62-64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 119 | 161 | 159 | 85 | 524 |
| $65$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 112 | 32 | 14 | 18 | 2 | 178 |
| 66-72 | 0 | 54 | 74 | 110 | 131 | 158 | 158 | 175 | 85 | 57 | 34 | 15 | 16 | 1,067 |
| 73 and over | 120 | 69 | 49 | 26 | 20 | 17 | 2 | 6 | 7 | 4 | 5 | 1 | 6 | 332 |
|  | 120 | 123 | 123 | 136 | 151 | 175 | 160 | 181 | 204 | 212 | 214 | 193 | 719 | 2,771 |

Table 12.4. Distribution by years of sehool completed and fanily income in 1972, aen only

| Years of school completed | Fanily income in 1972 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Married men |  |  |  | Moomarried men |  |  |  |
|  | \$0-4,000 | $\begin{aligned} & \$ 4,001- \\ & 6,000 \end{aligned}$ | $\begin{aligned} & \$ 6,001- \\ & 10,000 \end{aligned}$ | \$10,001+ | \$0-4,000 | $\begin{gathered} \$ 4,001- \\ 6,000 \end{gathered}$ | $\begin{aligned} & \$ 6,001- \\ & 10,000 \end{aligned}$ | \$10,001+ |
| Total number Total parcent | $\begin{array}{r} 724 \\ 26 \end{array}$ | $\begin{array}{r} 697 \\ 25 \end{array}$ | $\begin{array}{r} 711 \\ 26 \end{array}$ | $\begin{array}{r} 639 \\ 23 \end{array}$ | $\begin{aligned} & 77 \\ & 56 \end{aligned}$ | $\begin{aligned} & 17 \\ & 12 \end{aligned}$ | $\begin{aligned} & 18 \\ & 13 \end{aligned}$ | $\begin{aligned} & 26 \\ & 19 \end{aligned}$ |
| $\frac{\text { Elementary }}{\text { Lass than } 8 \text { years }}$ 8 years | $\begin{aligned} & 313 \\ & 211 \end{aligned}$ | $\begin{aligned} & 182 \\ & 215 \end{aligned}$ | $\begin{aligned} & 140 \\ & 200 \end{aligned}$ | $\begin{gathered} 74 \\ 134 \end{gathered}$ | $\begin{aligned} & 33 \\ & 21 \end{aligned}$ | $\begin{aligned} & 1 \\ & 9 \end{aligned}$ | $\begin{aligned} & 4 \\ & 6 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \end{aligned}$ |
| $\frac{\text { Hish school }}{1-3 \text { years }} \begin{gathered} 4 \text { years } \end{gathered}$ | $\begin{aligned} & 94 \\ & 63 \end{aligned}$ | 137 | $\begin{aligned} & 124 \\ & 149 \end{aligned}$ | $\begin{aligned} & 105 \\ & 155 \end{aligned}$ | $\begin{aligned} & 11 \\ & 7 \end{aligned}$ | $\begin{aligned} & 2 \\ & 4 \end{aligned}$ | $\begin{aligned} & 0 \\ & 3 \end{aligned}$ | 7 |
| College 1-3 years 4 or more | $\begin{aligned} & 25 \\ & 18 \end{aligned}$ | $\begin{aligned} & 31 \\ & 26 \end{aligned}$ | $\begin{aligned} & 45 \\ & 53 \end{aligned}$ | $\begin{array}{r} 59 \\ 112 \end{array}$ | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 3 \\ & 2 \end{aligned}$ | 5 |

Table 12.5. Distribution by yeare of school completed and family income in 1972, women oaly

| Years of school completed | Fanily Income in 1972 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Married momen |  |  |  | Monmarried women |  |  |  |
|  | \$0-4,000 | $\begin{gathered} \$ 4,001- \\ 6,000 \end{gathered}$ | $\begin{aligned} & \mathbf{\$ 6 , 0 0 1 -} \\ & 10,000 \end{aligned}$ | \$10,001+ | \$0-4,000 | $\begin{gathered} \$ 4,001- \\ 6,000 \end{gathered}$ | $\begin{aligned} & \$ 6,001- \\ & 10,000 \end{aligned}$ | \$10,001+ |
| Total number | 724 | 697 | 711 | 639 | 100 | 41 | 38 | 36 |
| Total percent | 26 | 25 | 26 | 23 | 46 | 19 | 18 | 17 |
| Elementary |  |  |  |  |  |  |  |  |
| Less chan 8 years 8 years | $\begin{aligned} & 241 \\ & 202 \end{aligned}$ | $\begin{aligned} & 154 \\ & 177 \end{aligned}$ | $\begin{gathered} 85 \\ 144 \end{gathered}$ | $\begin{array}{r} 40 \\ 98 \end{array}$ | $\begin{aligned} & 21 \\ & 14 \end{aligned}$ | $\begin{aligned} & 3 \\ & 7 \end{aligned}$ | $4$ | 3 2 |
| High school |  |  |  |  |  |  |  |  |
| 4 years | 120 | 174 | 230 | 214 | 36 | 20 | 15 | 11 |
| College |  |  |  |  |  |  |  |  |
| 1-3 years | 23 | 54 | 61 | 86 | 4 | 3 | 3 | 4 |
| 4 or more | 11 | 20 | 42 | 93 | 14 | 6 | 6 | 12 |

~

Tabla 12.6. Diatribucion of claim scatue by sex, marical scacus, and age

| Sax, marttel statua, and ege | Maim atatus |  |  |
| :---: | :---: | :---: | :---: |
|  | Primary workar | Dependent apousa | $\begin{aligned} & \text { Mot } \\ & \text { collecting } \end{aligned}$ |
| Man: |  |  |  |
| Marriad |  |  |  |
| 61 < | 0 | 0 | 51 |
| 62-64 | 268 | 0 | 29 |
| 65 | 204 | 0 | 1 |
| 66-72 | 1,389 | 2 | 13 |
| 73+ | 803 | 0 | 11 |
| Monmarried |  |  |  |
| 62-64 | 20 | 0 | 0 |
| 65 | 13 | 0 | 0 |
| 66-72 | 71 | 0 | 0 |
| 73+ | 34 | 0 | 0 |

Noman:

| Married |  |  |  |
| :---: | ---: | ---: | ---: |
| $61 \ll$ | 0 | 0 | 670 |
| $62-64$ | 234 | 218 | 72 |
| 65 | 96 | 80 | 2 |
| $66-72$ | 521 | 531 | 15 |
| $73+$ | 147 | 179 | 6 |
|  |  |  |  |
| Monmarried | 18 | 0 | 0 |
| $62-64$ | 12 | 0 | 0 |
| 65 | 129 | 0 | 0 |
| $66-72$ | 56 | 0 | 0 |
| $73+$ | 4,015 | 1,010 | 870 |

## XIII. APPENDIX C. TADLES

Table 13.1. Annual return rate on U.S. government bonds and stock market, 1937-1972

| Period | Annual nominal return rate |  |  | Average of colume (1) and (2) <br> (3) | Average annuel real rate of return |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | U.3. | government bonds | Stock market |  |  |
|  |  | (1) | (2) |  |  |
| 1937 |  | 2.74 | 4.38 | 3.56 | -0.04 |
| 1938 |  | 2.61 | -24.93 | -11.16 | -9.26 |
| 1939 |  | 2.41 | 8.99 | 5.7 | 7.1 |
| 1940 |  | 2.26 | -3.71 | -0.725 | -1.725 |
| 1941 |  | 2.05 | -5.28 | -1.615 | -6.615 |
| 1942 |  | 2.46 | -5.79 | -1.665 | -12.365 |
| 1943 |  | 2.47 | 33.14 | 17.805 | 11.705 |
| 1944 |  | 2.48 | 12.91 | 7.695 | 5.995 |
| 1945 |  | 2.37 | 23.72 | 13.045 | 10.745 |
| 1946 |  | 2.19 | 15.89 | 9.04 | 0.54 |
| 1947 |  | 2.25 | -6.73 | -2.24 | -16.64 |
| 1948 |  | 2.44 | 8.13 | 5.285 | -2.515 |
| 1949 |  | 2.31 | 8.58 | 5.445 | 6.445 |
| 1950 |  | 2.32 | 25.18 | 13.75 | 12.75 |
| 1951 |  | 2.57 | 25.52 | 14.045 | 6.145 |
| 1952 |  | 2.68 | 14.73 | 8.705 | 6.505 |
| 1953 |  | 2.94 | 6.42 | 4.68 | 3.88 |
| 1954 |  | 2.55 | 23.06 | 12.805 | 12.305 |
| 1955 |  | 2.84 | 35.08 | 18.96 | 19.36 |
| 1956 |  | 3.08 | 9.20 | 6.14 | 4.64 |
| 1957 |  | 3.47 | 8.38 | 5.925 | 2.325 |
| 1958 |  | 3.43 | 8.16 | 5.795 | 3.095 |
| 1959 |  | 4.07 | 24.09 | 14.08 | 13.28 |
| 1960 |  | 4.01 | . 90 | 2.455 | 0.855 |
| 1961 |  | 3.90 | 20.18 | 12.04 | 11.04 |
| 1962 |  | 3.95 | -2.68 | 0.635 | -0.465 |
| 1963 |  | 4.00 | 14.54 | 9.27 | 8.07 |
| 1964 |  | 4.15 | 18.24 | 11.195 | 9.895 |
| 1965 |  | 4.21 | 11.13 | 7.67 | 5.97 |
| 1966 |  | 4.66 | . 24 | 2.45 | -0.45 |
| 1967 |  | 4.85 | 10.93 | 7.89 | 4.99 |
| 1968 |  | 5.25 | 10.31 | 7.78 | 3.58 |
| 1969 |  | 6.10 | 2.52 | 4.31 | -1.09 |
| 1970 |  | 6.59 | 3.84 | 5.215 | -0.685 |
| 1971 |  | 5.74 | 23.88 | 14.81 | 10.51 |
| 1972 |  | 5.63 | 13.63 | 9.63 | 6.33 |

a.s. Bureau of the Census (1960, 1975).

Table 13.2. Consumer price index, U.S. eicy average, all 1teme, 1937-1972 ( $1967=100$ )

| Year | Consumer price Index: $a l l$ itema | Inflation rate (percent) |
| :---: | :---: | :---: |
| 1937 | 43.0 | 3.6 |
| 1938 | 42.2 | -1.9 |
| 1939 | 41.6 | -1.4 |
| 1940 | 42.0 | 1.0 |
| 1941 | 44.1 | 5.0 |
| 1942 | 48.8 | 10.7 |
| 1943 | 51.9 | 6.1 |
| 1944 | 52.7 | 1.7 |
| 1945 | 53.9 | 2.3 |
| 1946 | 58.5 | 8.5 |
| 1947 | 66.9 | 14.4 |
| 1948 | 72.1 | 7.8 |
| 1949 | 71.4 | -1.0 |
| 1950 | 72.1 | 1.0 |
| 1951 | 77.8 | 7.9 |
| 1952 | 79.5 | 2.2 |
| 1953 | 80.1 | 0.8 |
| 1954 | 80.5 | 0.5 |
| 1955 | 80.2 | -0.4 |
| 1956 | 81.4 | 1.5 |
| 1957 | 84.3 | 3.6 |
| 1958 | 86.6 | 2.7 |
| 1959 | 87.3 | 0.8 |
| 1960 | 88.7 | 1.6 |
| 1961 | 89.6 | 1.0 |
| 1962 | 90.6 | 1.1 |
| 1963 | 91.7 | 1.2 |
| 1964 | 92.9 | 1.3 |
| 1965 | 94.5 | 1.7 |
| 1966 | 97.2 | 2.9 |
| 1967 | 100.0 | 2.9 |
| 1968 | 104.2 | 4.2 |
| 1969 | 109.8 | 5.4 |
| 1970 | 116.3 | 5.9 |
| 1971 | 121.3 | 4.3 |
| 1972 | 125.3 | 3.3 |

av.S. President (1976).

${ }^{2}$ Freiden, Leimer, and Hoffinan (1976).

Table 13.4. Sex-nautral survivor probabilitice

| Age |  | Age |  |
| :---: | :---: | :---: | :---: |
| $40^{2}$ | . 997 | 71 | . 96037 |
| 41 | . 9967 | 72 | . 95704 |
| 42 | . 99638 | 73 | . 95334 |
| 43 | . 99603 | 74 | . 94923 |
| 44 | . 99565 | 75 | . 94471 |
| 45 | . 99524 | 76 | . 93977 |
| 46 | . 99479 | 77 | . 93435 |
| 47 | . 99427 | 78 | . 92835 |
| 48 | . 99367 | 79 | . 92169 |
| 49 | . 99300 | 80 | . 91441 |
| 50 | . 99226 | 81 | . 90652 |
| 51 | . 99148 | 82 | . 89798 |
| 52 | . 998071 | 83 | . 88878 |
| 53 | . 98995 | 84 | . 87890 |
| 54 | . 98918 | 85 | . 87826 |
| 55 | . 98839 | 86 | . 85686 |
| 56 | . 98851 | 87 | . 84478 |
| 57 | . 98648 | 88 | . 83209 |
| 58 | . 98527 | 89 | . 81891 |
| 59 | . 98389 | 90 | . 80540 |
| 60 | . 98239 | 91 | . 79153 |
| 61 | . 98083 | 92 | . 77751 |
| $62^{\text {b }}$ | . 97918 | 93 | . 76370 |
| 63 | . 97748 | 94 | . 75031 |
| 64 | . 97569 | 95 | . 73732 |
| 65 | . 97378 | 96 | . 72494 |
| 66 | . 97372 | 97 | . 71355 |
| 67 | . 97124 | 98 | . 70333 |
| 68 | . 96873 | 99 | . 69443 |
| 69 | . 96614 | 100 | . 68653 |
| 70 | . 96338 | 101 | . 67910 |

[^34]Table 13.5. Age-sex-race specific survivor probabilitias

| Age | White |  | Monwhite |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Men | Nomen | Men | Homen |
| $40^{2}$ | . 99668 | . 99810 | . 99231 | . 99439 |
| 41 | . 99632 | . 99791 | . 99186 | . 99389 |
| 42 | . 99591 | . 99771 | . 99125 | . 99344 |
| 43 | . 99546 | . 99748 | . 99069 | . 99304 |
| 44 | . 99496 | . 99724 | . 99016 | . 99267 |
| 45 | . 99442 | . 99697 | . 98962 | . 99231 |
| 46 | . 99383 | . 99669 | . 98899 | . 99186 |
| 47 | . 99314 | . 99638 | . 98817 | . 99125 |
| 48 | . 99234 | . 99604 | . 98708 | . 99043 |
| 49 | . 99144 | . 99568 | . 98578 | . 98942 |
| 50 | . 99045 | . 99527 | . 98435 | . 98833 |
| 51 | . 98942 | . 99483 | . 98290 | . 98721 |
| 52 | . 98838 | . 99440 | . 98146 | . 98608 |
| 53 | . 98736 | . 99399 | . 98006 | . 98496 |
| 54 | . 98632 | . 99358 | . 97869 | . 98383 |
| 55 | . 98525 | . 99313 | . 97727 | . 98269 |
| 56 | . 98407 | . 99260 | . 97573 | . 98148 |
| 57 | . 9827 | . 99195 | . 97411 | . 98017 |
| 58 | . 98109 | . 99114 | . 97238 | . 97870 |
| 59 | . 97926 | . 99019 | . 97053 | . 97713 |
| 60 | . 97729 | . 98912 | . 96863 | . 97541 |
| 61 | . 97524 | . 98797 | . 96665 | . 97368 |
| $62^{\text {b }}$ | . 97466 | . 98010 | . 97301 | . 98529 |
| 63 | . 97244 | . 98806 | . 97073 | . 98376 |
| 64 | . 97003 | . 98689 | . 96823 | . 98203 |
| 65 | . 96742 | . 98557 | . 96558 | . 98018 |
| 66 | . 96528 | . 98464 | . 96148 | . 97737 |
| 67 | . 96207 | . 98259 | . 95772 | . 97464 |
| 68 | . 95882 | . 98052 | . 95397 | . 97192 |
| 69 | . 95549 | . 97836 | . 95024 | . 96921 |
| 70 | . 95201 | . 97606 | . 94650 | . 96645 |
| 71 | . 94833 | . 97354 | . 94268 | . 96356 |
| 72 | . 94440 | . 97073 | . 93870 | . 96045 |
| 73 | . 94018 | . 96757 | . 93451 | . 95708 |
| 74 | . 93560 | . 96401 | . 93004 | . 95342 |
| 75 | . 93061 | . 96001 | . 92527 | . 94943 |
| 76 | . 92518 | . 95552 | . 92022 | . 94511 |
| 77 | . 91929 | . 95049 | . 91488 | . 94049 |

[^35]Table 13.5. continued

| Age | White |  | Nonwhite |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Man | Women | Men | Women |
| 78 | . 91289 | . 94485 | . 90925 | . 93557 |
| 79 | . 90593 | . 93855 | . 90326 | . 93042 |
| 80 | . 89836 | . 93154 | . 89690 | . 92504 |
| 81 | . 89018 | . 92381 | . 89015 | . 91941 |
| 82 | . 88131 | . 91532 | . 88309 | . 91353 |
| 83 | . 87172 | . 90605 | . 87574 | . 90733 |
| 84 | . 86144 | . 89597 | . 86803 | . 90078 |
| 85 | . 85043 | . 88507 | . 86000 | . 89376 |
| 86 | . 83865 | . 87334 | . 85183 | . 88628 |
| 87 | . 82610 | . 86086 | . 84357 | . 87843 |
| 88 | . 81276 | . 84774 | . 83502 | . 87026 |
| 89 | . 79861 | . 83414 | . 82626 | .86181 |
| 90 | . 78389 | . 82005 | . 81773 | .85341 |
| 91 | . 76880 | . 80551 | . 80995 | . 84531 |
| 92 | . 73358 | . 79050 | . 80329 | . 83785 |
| 93 | . 73865 | . 77522 | . 79782 | . 83118 |
| 94 | . 72419 | . 75987 | . 79349 | . 82519 |
| 95 | . 71002 | . 73031 | . 79020 | . 81929 |
| 96 | . 69570 | . 71678 | . 78780 | . 81277 |
| 97 | . 68189 | . 70438 | . 78578 | . 80543 |
| 98 | . 66897 | . 69313 | . 78296 | . 79758 |
| 99 | . 65743 | . 68316 | . 77940 | . 78979 |
| 100 | . 64690 | . 67395 | . 77496 | . 78227 |
| 101 | . 63610 | . 67395 | . 76960 | . 77523 |

Table 14.1. Comparison of accumulated contributions

| Pemily income <br> level in 1972 | Mean diffarence <br> between ROATC <br> and TATC | Percentage of <br> population |
| :---: | :---: | :---: |
| $0-1,000$ | $\$-276.00$ | .9 |
| $1,001-1,500$ | -134.00 | 1.1 |
| $1,501-2,000$ | -185.00 | 2.7 |
| $2,001-2,500$ | -206.00 | 3.9 |
| $2,501-3,000$ | -233.00 | 4.9 |
| $3,001-3,500$ | -216.00 | 3.6 |
| $3,501-4,000$ | -252.00 | 7.4 |
| $4,001-5,000$ | -306.00 | 14.2 |
| $5,001-6,000$ | -349.00 | 12.2 |
| $6,001-8,000$ | -391.00 | 16.0 |
| $8,001-10,000$ | -467.00 | 9.4 |
| $10,001-20,000$ | -501.00 | 16.5 |
| $20,001+$ | -489.00 | 5.2 |
| Total | $\$-308.00$ | 100 |

aroarc is the beneficiary's accumulated contributiona credited to his/her account uaing the roll-over compounding schame. TATC is the beneficiary's accumulated contributions based on the traditional compounding schame.
XV. APPEMDIX E. RESULTS

Table 15.1. Aggregate data for Table 7.1

|  | $\begin{gathered} \text { Total } \\ \text { OAI } \\ \text { benefice } \\ \text { in } 1972 \end{gathered}$ | ```Type-6 actuarially falr benefic: (total)``` | ```Total \\ anount of intergemarational transers``` | ```Percent of: total Intergenerational transfers``` | Gumlative ${ }^{\text {a }}$ percent |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6,975 | 174 | 6,801 | 0.11 | 0.11 |
| 1,001-1,500 | 43,673 | 3,127 | 40,546 | 0.64 | 0.75 |
| 1,501-2,000 | 104,007 | 9.010 | 94.997 | 1.51 | 2.26 |
| 2,001-2,500 | 236,281 | 20,545 | 215.736 | 3.43 | 5.69 |
| 2,501-3,000 | 302,978 | 28,388 | 274,590 | 4.63 | 10.32 |
| 3,001-3,500 | 387.296 | 41.054 | 346,242 | 5.50 | 15.82 |
| 3,501-4,000 | 575,508 | 65,193 | 510,315 | 8.11 | 23.93 |
| 4,001-5,000 | 1,044,646 | 120,014 | 924,632 | 14.69 | 38.62 |
| 5,001-6,000 | 887,077 | 107.522 | 779,555 | 12.39 | 51.01 |
| 6,001-8,000 | 1,190,461 | 147.815 | 1,042,646 | 16.57 | 67.58 |
| 8,001-10,000 | 702,368 | 82,856 | 619.512 | 9.84 | 77.42 |
| $10,001-20,000$ | 1,242,319 | 131,220 | 1.111,099 | 17.66 | 95.08 |
| $20,001+$ | 366,117 | 39,503 | 326,614 | 5.19 | 100.27 |
| Total | 7,089,706 | 796,421 | 6,293,285 | 100.27 |  |

a Tocals may not add to 100 because of mouding.

Table 15.2. Changes in the percentage of rediatribution due to indexing for married, both retired households

| Tocal fanily incone in 1972 | Cender-merged, earnings adjusted |  |  | Sex-race-distinct, earnings adjusted |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type-1 | $\xrightarrow{\text { Iype-4 }}$ | $(2)-(1)$ | Type-2 | Type-5 | $(4)-(3)$ |
|  | (1) <br> Nonindexed ${ }^{\text {a }}$ | (2) <br> Indexed | percentage of redistribution | (3) <br> Monindexed ${ }^{\text {a }}$ | (4) <br> Indexed ${ }^{3}$ | percentage of redistribution |
| $0-1,000$ | 97.4 | 97.7 | 0.3 | 97.5 | 97.8 | 0.3 |
| $1,001-1,500$ | 93.1 | 93.9 | 0.8 | 93.3 | 94.1 | 0.8 |
| 1,501-2,000 | 90.7 | 91.8 | 1.1 | 90.9 | 92.0 | 1.1 |
| 2,001-2,500 | 90.4 | 91.3 | 0.9 | 90.5 | 91.6 | 1.1 |
| 2,501-3,000 | 89.6 | 90.6 | 1.0 | 89.7 | 91.0 | 1.3 |
| 3,001 $=3,500$ | 88.2 | 89.4 | 1.2 | 88.4 | 89.7 | 1.3 |
| 3,501-4,000 | 87.4 | 88.6 | 1.2 | 87.6 | 88.9 | 1.3 |
| 4,001-5,000 | 86.8 | 88.2 | 1.4 | 87.1 | 88.6 | 1.5 |
| 5,001-6,000 | 86.0 | 87.5 | 1.5 | 86.3 | 87.9 | 1.6 |
| 6,001-8,000 | 85.4 | 87.1 | 1.7 | 85.7 | 87.5 | 1.8 |
| 8,001-10,000 | 85.9 | 87.7 | 1.8 | 86.2 | 88.1 | 1.9 |
| 10,001-20,000 | 87.4 | 88.9 | 1.5 | 87.6 | 89.3 | 1.7 |
| $20,001+$ | 87.1 | 88.6 | 1.5 | 87.3 | 88.9 | 1.6 |

araw data used to calculate the percentage of redistribution for each fanily income classification is avallable upon request.

Table 15.3. Changes in the percentege of redistribution under different survivorship probability esaumptions, nonearning test adjusted for married, both retired houscholds

| $\begin{aligned} & \text { Total family } \\ & \text { income } \\ & \text { in } 1972 \end{aligned}$ | Annuity-type, indexed |  |  | Change in percentage of redistribution |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type-1 ${ }^{\text {a }}$ | Type-2 ${ }^{\text {a }}$ | Type-3 ${ }^{\text {a }}$ |  |  |
|  | (4) | (5) | (6) | (5)-(4) | (6)-(4) |
| 0-1,000 | 97.7 | 97.8 | 97.6 | 0.1 | -0.1 |
| 1,001-1,500 | 93.9 | 94.1 | 92.9 | 0.2 | -1.0 |
| 1,501-2,000 | 91.8 | 92.0 | 91.3 | 0.2 | -0.5 |
| 2,001-2,500 | 91.1 | 91.4 | 91.1 | 0.3 | 0.0 |
| 2,501-3,000 | 90.3 | 90.6 | 90.3 | 0.3 | 0.0 |
| 3,001-3,500 | 89.1 | 89.5 | 89.1 | 0.4 | 0.0 |
| 3,501-4,000 | 88.3 | 88.6 | 88.4 | 0.3 | 0.1 |
| 4,001-5,000 | 87.9 | 88.3 | 88.2 | 0.4 | 0.3 |
| 5,001-6,000 | 87.1 | 87.6 | 87.5 | 0.5 | 0.4 |
| 6,001-8,000 | 86.4 | 86.8 | 86.8 | 0.4 | 0.4 |
| 8,001-10,000 | 86.6 | 87.1 | 87.1 | 0.5 | 0.5 |
| 10,001-20,000 | 87.1 | 87.5 | 87.6 | 0.4 | 0.5 |
| 20,001+ | 87.0 | 87.4 | 87.7 | 0.4 | 0.7 |
| Mean | 87.6 | 88.0 | 88.0 | 0.4 | 0.4 |

${ }^{\text {a }}$ Raw data used to calculate the percentage of redistribution for each fanily income clasaification ts available upon request.

Table 15,4. Sumary percentage point comparisons for married, both retired households by annuity type, sex, and bousehold type



Table 15.5. Nale to female differences in percontage of redistribucion controlling for fanily income and family type

| $\begin{aligned} & \text { Total family } \\ & \text { income } \\ & \text { In } 1972 \end{aligned}$ | Type-1 |  |  | Type-2 |  |  | Type-3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pemale | Male | Difference | Female | Male | Difference | Female | Male | Difference |
| Two earner |  |  |  |  |  |  |  |  |  |
| 2,0-2,000 | 87 | 93 | $\pm 6$ | 88 | 93 | 45 | 88 | 93 | +5 |
| 2,001-2,500 | 88 | 93 | +5 | 88 | 93 | +5 | 88 | 93 | +5 |
| 2,501-3,000 | 88 | 92 | +4 | 88 | 92 | 4 | 88 | 92 | +4 |
| 3,001-3,500 | 84 | 88 | +4 | 85 | 88 | +3 | 84 | 88 | +4 |
| 3,501-4,000 | 81 | 88 | + | 82 | 89 | +7 | 82 | 89 | +7 |
| 4,001-5,000 | 80 | 87 | +7 | 80 | 87 | +7 | 80 | 87 | +7 |
| 5,001-6,000 | 78 | 87 | $+9$ | 79 | 87 | +8 | 79 | 87 | +8 |
| 6,001-8,000 | 79 | 86 | +7 | 80 | 86 | +6 | 80 | 86 | +6 |
| 8,001-10,000 | 80 | 86 | +6 | 81 | 86 | +5 | 81 | 86 | +5 |
| 10,001-20,000 | 84 | 87 | +3 | 84 | 87 | +3 | 84 | 88 | +4 |
| 20,001+ | 81 | 86 | +5 | 82 | 87 | +5 | 82 | 87 | +5 |
| Mean |  |  | 5.7 |  |  | 5.3 |  |  | 5.5 |
| One earner |  |  |  |  |  |  |  |  |  |
| 0-2,000 | 90 | 96 | +6 | 90 | 96 | +6 | 90 | 96 | +6 |
| 2,001-2,500 | 90 | 96 | +6 | 90 | 96 | +6 | 91 | 96 | +5 |
| 2,501-3,000 | 85 | 94 | +9 | 86 | 94 | +8 | 86 | 94 | +8 |
| 3,001-3,500 | 84 | 93 | +9 | 85 | 93 | +8 | 85 | 93 | $+8$ |
| 3,501-4,000 | 82 | 92 | $+10$ | 82 | 92 | +10 | 82 | 92 | +10 |
| 4,001-5,000 | 83 | 92 | +9 | 83 | 93 | +10 | 83 | 93 | +10 |
| 5,001-6,000 | 79 | 91 | +12 | 79 | 91 | +12 | 79 | 91 | +12 |
| 6,001-8,000 | 80 | 91 | $+11$ | 81 | 91 | $+10$ | 81 | 91 | +10 |
| 8,001-10,000 | 79 | 91 | $+12$ | 79 | 91 | $+12$ | 79 | 91 | +12 |
| 10,001-20,000 | 82 | 92 | +10 | 82 | 92 | +10 | 83 | 92 | +9 |
| 20,001+ | 83 | 93 | +10 | 84 | 93 | +9 | 84 | 93 | +9 |
| Nean |  |  | 9.6 |  |  | 9.2 |  |  | 9.0 |

Table 15.6. Family type differences in percentage of redistribution controlling for fanily income and sex

| Total family income in 1972 | Type-1 |  |  | Type-2 |  |  | Type-3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Two earner | $\begin{gathered} \text { One } \\ \text { earner } \end{gathered}$ | Difference | nwo easmer | $\begin{gathered} \text { Ore } \\ \text { earber } \end{gathered}$ | Difference | 7wo carmer | One earner | Difference |
| Females |  |  |  |  |  |  |  |  |  |
| 0-2,000 | 87 | 90 | $+3$ | 88 | 90 | -2 | 88 | 90 | $+2$ |
| 2,001-2,500 | 88 | 90 | $+2$ | 88 | 90 | +2 | 88 | 91 | +3 |
| 2,501-3,000 | 88 | 85 | -3 | 88 | 86 | -2 | 88 | 86 | -2 |
| 3,001-3,500 | 84 | 84 | 0 | 85 | 85 | 0 | 84 | 85 | +1 |
| 3,501-4,000 | 81 | 82 | $+1$ | 82 | 82 | 0 | 82 | 82 | 0 |
| 4,001-5,000 | 80 | 83 | +3 | 80 | 83 | +3 | 80 | 83 | +3 |
| 5,001-6,000 | 78 | 79 | $+1$ | 79 | 79 | 0 | 79 | 79 | 0 |
| 6,001-8,000 | 79 | 80 | $+1$ | 80 | 81 | +1 | 80 | 81 | +1 |
| 8,001-10,000 | 80 | 79 | -1 | 81 | 79 | -2 | 81 | 79 | -2 |
| 10,001-20,000 | 84 | 82 | -2 | 84 | 82 | -2 | 84 | 83 | -1 |
| 20,001+ | 81 | 83 | +2 | 82 | 84 | +2 | 82 | 84 | +2 |
| Nean |  |  |  |  |  |  |  |  |  |
| Males |  |  |  |  |  |  |  |  |  |
| $0-2,000$ | 93 | 96 | +3 | 93 | 96 | +3 | 93 | 96 | +3 |
| 2,001-2,500 | 93 | 96 | $+3$ | 93 | 96 | +3 | 93 | 96 | +3 |
| 2,501-3,000 | 92 | 94 | +2 | 92 | 94 | +2 | 92 | 94 | +2 |
| 3,001-3,500 | 88 | 93 | +5 | 88 | 93 | +5 | 88 | 93 | $+5$ |
| 3,501-4,000 | 88 | 92 | 4 | 89 | 92 | +3 | 89 | 92 | +3 |
| 4,001-5,000 | 87 | 92 | $+5$ | 87 | 93 | +6 | 87 | 93 | +6 |
| 5,001-6,000 | 87 | 91 | + 4 | 87 | 91 | +4 | 87 | 91 | 4 |
| 6,001-8,000 | 86 | 91 | +5 | 86 | 91 | +5 | 86 | 91 | $+5$ |
| 8,001-10,000 | 86 | 91 | +5 | 86 | 91 | +5 | 86 | 91 | +5 |
| 10,001-20,000 | 87 | 92 | $+5$ | 87 | 92 | +5 | 88 | 92 | +4 |
| $20,001+$ | 86 | 93 | +7 | 87 | 93 | +6 | 87 | 93 | +6 |
| Mean |  |  |  |  |  |  |  |  |  |

Table 15.7. Honindexed to indexed differences in percentage of redistribution controlling for family income and bousehold unit

|  | Type-1 |  |  | Type-2 |  |  | Type-3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nonindexed | Indexed | Differences | $\begin{aligned} & \text { llon- } \\ & \text { indexed } \end{aligned}$ | Indexed | Differences | Monindened | Indexed | Differences: |
| 7wo-earner |  |  |  |  |  |  |  |  |  |
| 0-2,000 | 91 | 92 | $+1$ | 91 | 92 | +1 | 91 | 92 | $+1$ |
| 2,001-2,500 | 91 | 92 | $+1$ | 92 | 93 | +1 | 92 | 93 | $+1$ |
| 2,501-3,000 | 90 | 91 | $+1$ | 90 | 91 | $+1$ | 90 | 91 | $+1$ |
| 3,001-3,500 | 87 | 88 | $+1$ | 87 | 88 | +1 | 87 | 88 | $+1$ |
| 3,501-4,000 | 86 | 87 | $+1$ | 86 | 87 | $+1$ | 86 | 87 | +1 |
| 4,001-5,000 | 84 | 86 | +2 | 85 | 86 | +1 | 85 | 86 | $+1$ |
| 5,001-6,000 | 84 | 85 | +1 | 84 | 86 | +2 | 84 | 86 | +2 |
| 6,001-8,000 | 83 | 85 | $+2$ | 83 | 85 | +2 | 84 | 86 | +2 |
| 8,001-10,000 | 83 | 85 | +2 | 84 | 86 | +2 | 84 | 86 | $+2$ |
| 10,001-20,000 | 86 | 87 | +1 | 86 | 87 | $+1$ | 86 | 88 | +2 |
| 20,001* | 84 | 86 | +2 | 85 | 86 | +1 | 85 | 87 | +2 |
| One-earner |  |  |  |  |  |  |  |  |  |
| 0-2,000 | 94 | 95 | $+1$ | 94 | 95 | +1 | 94 | 95 | +1 |
| 2,001-2,500 | 94 | 95 | +1 | 94 | 95 | +1 | 95 | 95 | 0 |
| 2,501-3,000 | 91 | 92 | $+1$ | 91 | 92 | $+1$ | 91 | 92 | $+1$ |
| 3,001-3,500 | 91 | 91 | 0 | 91 | 92 | $+1$ | 91 | 92 | $+1$ |
| 3,501-4,000 | 89 | 90 | +1 | 89 | 90 | +1 | 89 | 90 | $+1$ |
| 4,001-5,000 | 90 | 90 | 0 | 90 | 91 | $+1$ | 90 | 91 | $+1$ |
| 5,001-6,000 | 87 | 88 | $+1$ | 87 | 89 | $+2$ | 87 | 89 | +2 |
| 6,001-8,000 | 88 | 89 | $+1$ | 89 | 89 | 0 | 88 | 89 | +1 |
| 8,001-10,000 | 87 | 89 | +2 | 88 | 89 | $+1$ | 88 | 89 | $+1$ |
| 10,001-20,000 | 89 | 90 | $+1$ | 89 | 90 | +1 | 89 | 90 | +1 |
| 20,001* | 90 | 91 | $+1$ | 90 | 91 | $+1$ | 90 | 91 | $+1$ |

# XI. APPNDIX F. DISAGGRLCATION OF TAE 1937 co 1950 REPORTLD EABHLHCS MEASURE 

To correcty calculate the lifetime carnings measure, the 1937-1950 sumary taxable earninge measure had to be disaggregated into yearspecific reported earnings measures. Thia vas accomplished by using the year-apecific eatimated annual quarters of coverage from 1937 to 1950 and the 1937-1950 sumary taxable earnings measure. The following procedure wa employed to estimate the year-specific reported carnings for 1937 to 1950. Firat, the eatimated reported carnings for year ( (EREP ${ }_{i}$ ) was calculsted by

$$
\begin{equation*}
\left.E R E P_{i}=\left(\frac{\text { EQC }_{i}}{\operatorname{TLQC}_{i}}\right) \frac{N_{i}}{\left(\sum_{i=1937}^{50} \frac{N_{i}}{14}\right.}\right) \text { (TOTALSO) } \tag{16.1}
\end{equation*}
$$

where EQCi equals the estimated quarter of coverage in year $i$, TEQC equals the total estimated quarters of coverage for 1937 to 1950, $\mathbf{w}_{i}$ equals the average annual carninga for full-time employee in manufac50 curing in year $i, \underset{i=1937}{\sum} \mathrm{M}_{\mathrm{i}} / 14$ equale the average annual carninge for full-time employee in manufacturing over the 1937-1950 time period, and TOTALSO equala the total reported earnings for the 1937-1950 time period, as reported on the Longitudinal Exact Match File. Hence, the eatimated reported earninge are divided over the time interval proportionally to the estimated annual quarters of coverage and average annual earnings in manufacturing from 1937 to 1950.

Because the estiated reported carnings measures mere adjusted for the changes in average carnings over time, the sum of the estimated reported earnings measures will not, in all likelihood, equal the rotal
reported earninge reported in the Longitudinal Exact Match File. The eatimation error is

$$
\begin{equation*}
\text { DIAS }=\text { TOTALSO }-\sum_{i=1937}^{50} \text { EREP. } \tag{16.2}
\end{equation*}
$$

The estimation error may be positive or negative depending on the location of the estimated quarters of coverage over the 1937-1950 time interval. The worker's eatimated reported earningt are proportionally adjusted by the eatimetion error. That is, the eatimation error is apread over the time period so as to preserve the proportion of estimated reported carnings in year in the total eatimated reported earnings from 1937 to 1950. The proportion of estimated reported earninge in year i ( RREP $_{i}$ ) to the total estimated reported earninge from 1937 to 1950 is represented by

$$
\begin{equation*}
\operatorname{PRO}_{i}=\frac{\operatorname{EREP}_{i}}{\substack{T G 50 \\ i=1937}} \tag{16.3}
\end{equation*}
$$

for i equal to 1937 to 1950. The adjuatment factor for each year (ADJ $\mathbf{i}_{\text {) }}$ is

$$
\begin{equation*}
A D J_{i}=P R O_{i} \times B L A S \tag{16.4}
\end{equation*}
$$

for i equal to 1937 to 1950. Finally, the adjustment factor for each year is used to adjust the estimated reported earnings for the same year. Hence, the reported earnings for year $i\left(\right.$ ( $R P_{i}$ ) is

$$
\begin{equation*}
R E P_{i}=E R E P_{i}+A D J \tag{16.5}
\end{equation*}
$$


[^0]:    ${ }^{114}$ gocial security" is broadly defined as the federal old-Age, Survivors, Disability, and Realth Insurance (0ASDAI) program. Prior to 1966 when the health insurance program was added, it was referred to as OASDI. This paper confines its analysis to the old-age (OAI) portion of OASDHI, which includes primary worker, spousal, transitional, and special age-72 benefits.

[^1]:    ${ }^{1}$ Parsons and Muroro (1971) find that within the next 50 years the intergenerational transfer will disappear coupletely; hence, each retirement cohort will distribute amongst its members the amount of money they initially paid into the progran. Similar results regarding the diminution of the intergenerational tranafer were found by Preiden et al. (1976) and Burkhauser and Warlick (1981) (see Chapter IIL).

[^2]:    ${ }^{1}$ Moncontributory, supplemental security benefits were not extended to husbands of female workers until 1950. In 1950, husband and widower benefits were extended to the husband of a female worker if he could prove that one-half of his support came frow his working wife or deceased wife. The "dependency test" was stricken from the law after it was declared unconstitutional by the Supreme Court in 1977 (Califano $\mathrm{v}_{0}$ Coldfarb).

[^3]:    ${ }^{1}$ There was a 20 -fold increase from 1950 to 1971 in women receiving primary-worker bencfits. At the end of 1971, there were 23 million adult beneficiaries of wich 13.8 million were women. Fifty percent of the female beneficiaries were receiving primary-worker benefits and 50 percent mere claiaing auxiliary benefits. The average monthly check for female beneficiaries was $\$ 100$ (Bixby, 1972).

[^4]:    ${ }^{1}$ In 1940, 17 percent of married women were represented in the labor force compared to 52 percent in 1981. The labor force participation of wowen is expected to continue its upward trend in the future. The actuaries of the social security Adainistration project a labor force parcicipation rate of approximately 67 percent in 1990 for women age 25 co 54.
    ${ }^{2}$ In 1984, only six percent of all families were made up of the traditional nuclear family where the man works and the woman is a fulltime homemaker.

[^5]:    ${ }^{1}$ The "Ponzi-like" financing scheme is financially sound provided economic and population growth exceed the growth in the size of the retirement population (Pechman et al., 1968; Samuelson, 1958).

[^6]:    ${ }^{1}$ The average monthly earnings is a sumary measure of the worker's earnings history calculated by suming the total taxable earnings in the computarion years divided by the number of months in the computation period. The ARE measure was replaced by a wage indexed base called the average indexed monthly earnings (ALME) in 1977. The ALME indexes the worker's earnings so that taxable carnings earned at different points in the life-cycle are expressed in terms of the overall carnings levels prevailing in the year of eligibility. The PIA is the basis for all benefit payments and is a function of the worker's AME (or AME after 1917).

[^7]:    ${ }^{1}$ In 1983, workers who postpone applying for retirement benefits receive benefits that are increased by three percent for each gear acceptance is delayed past age 65 up to a maximus of 15 percent.
    ${ }^{2}$ The loss in benefits may be partially or fully offeet by the worker's higher PIA as a result of the worker's extended earnings history.

[^8]:    lsince 1973, benefite mere reduced by one dollar for every two dollars of carnings above the earnings celling. Beginning January $l_{\text {. }}$ 1983, Worker-beneficiaries age 65 to 70 lost one dollar of benefits for every two dollars of earnings over 86,600 ( $\$ 550$ per month), whereas younger retirees, age 62-64, forfeited one dollar of benefits for every two dollars of carnings over $\$ 4,290$ ( $\$ 410$ per month). Both earnings 1imits are automatically indexed.
    ${ }^{2}$ Beginning in 1983, the earnings test applies only to workerbenefictaries who are 65 to 70 .

[^9]:    ${ }^{1}$ The expansion of social security beginning in 1969 is described in Martha Derthick, Policymaking for Social Security (1979).

[^10]:    Survivor probabilities measure the likelihood of an individual life age $x$ surviving to life age $x+1$.

[^11]:    ${ }^{1}$ The effect of socfoeconomic factors on mortality is more pronounced for persons aged 25-64; however, the effect of these characteristies is still relevant, in most cases, at advanced ages (i.e., age 65 and older).

[^12]:    ${ }^{1}$ The "income smoothing" feature of the program focuses on the cransfer of labor earaings from the worker's high earnings years to her retirement years through the contribution-benefit mechanism of the progran.

[^13]:    ${ }^{1}$ The primary insurance amount is the amount payable to a retired worker who begins to receive retirement benefits at age 65.

[^14]:    ${ }^{1}$ It takes approximately 40 years for a retirement program to reach full maturity.

[^15]:    ${ }^{1}$ The average monthly earnings is a sumary measure of the worker's carnings history calculated by sumaing the cotal taxable earnings in the computation years divided by the number of months in the computation period. The PIA is a function of the worker's AME.

[^16]:    ${ }^{1}$ For expository convenience, it is assumed in equation (4.4) that the husband and wife are the same age and retire at the same age. In Chapter $V$ of this dissertation, this assumption is dropped.

    The $z$ term captures the joint probability of the household surviving each successive month in the retirement period.

[^17]:    ${ }^{1}$ It was sufficient to have one record in a married couple satisfy the above criteria to get both records included in the sample. Annuity calculations for married persons require the preservation of the family unit.
    ${ }^{2}$ To be considered a "good match," all members of a stats unit must have matched Sumary Earnings Record, Internal Revenue Service and Master Beneficiary Record data present on the file, and a certain level of agreement between demographic information.
    ${ }^{3}$ special age-72 benefits are monthly benefits payable to a person aged 72 (before 1972 for male and 1970 for female) or over without sufficient quarters of coverage to qualify for a retired-worker benefit under cither the full or transitional insured-status provisions.

    Transitional benefits are monthly benefits payable to a person age 72 (before 1969) who has at least one quarter of coverage for every year after 1950 up to the year he/she reached age 65 (male) or 62 (female) with at least three quarters accumulated.

[^18]:    ${ }^{1}$ The shifting assumption is controversial (Brittain, 1971 and 1972a; Feldatein 1972 and 1974; Remmermach, 1979; MacRae and MacRac, 1976; Munne11, 1974; Vroman, 1974) but conventional in most studiea of individual equity (haron; 1974; Briteain 1972b; Burkhaueer and Warlick, 1981; Freiden, Leimer, and hoffaan; 1976; Leimer; 1978; Okonkwo, 1976; Oava, 1974). There are a fow computer simulation studies, based on representative individual equity measures, that have attempted to isolate the effect of the shifting assumption in individual equity measures. For instance, Chen and Chu (1974) found that internal rates of return are negetively related and contribution-benefit ratios positively related to the degree of backward shifting, ceteris paribus.

[^19]:    The decomposition of OASDI rates is especially important when benefit comparisons are made across women with different labor-homemaker decisions. A working woman covered by social security is eligible for disability benefits and her family is eligible for survivors' benefits, on the basis of her OASDI contributions in the event she should become disabled or die prior to retirement. The nonworiking woman and her family are not offered these benefits if the nonworking woman should become disabled of die. The nonworking woman is eligible for disability or survivorship benefits if the disability or death contingency occurs to her husband. Hence, the survivor and disability insurance coverages extended to the working woman prior to retirement are not duplicated by her husbands OASDI contribution.

[^20]:    A whole life annuity immediate pays the first payment one payment interval after the date of purchase and is purchased with a single premium. See Jordan (1975) for annuity formula derivations.

[^21]:    $1_{\text {Expected growth in future price assumption is based on Trustees }}$ intermediate II-B projection on inflation for 1972 of $\mathbf{0 . 0 2 7 5}$.

[^22]:    $1_{A}$ joint-and-two-thirds is comparable to purchasing a single annuity on each member's life and a joint-and-survivor annuity on both lives. The joint-and-two-thirds replicates the OAI program. The joint-and-twothirds annuity has an upper bound of one if both members survive, pays $2 / 3$ if there is one survivor, and has a lower bound of zero if there are no survivors in the group.

[^23]:    ${ }^{1}$ The effective interest rate used to calculate an annuity that pays geometrically increasing payments is $i^{\prime}=\frac{1+c}{1-c}$, where $i$ is the unindexed interest rate and $c$ is the future growth in prices.

[^24]:    ${ }^{1}$ Only housenold units where both the husband and wife were retired in 1972 were included in the data set used to estimate model 6.2 .
    ${ }^{\mathbf{2}}$ Loglinear and linear models were also estimated, but the reported model resulted in the best fit of the data.

[^25]:    c. Program-worker variables (SERLEN, SERLEN2, RAGER1, RAGER2, RAGER3, RCOHORT1, RCOHORT2) SERLEN, a continuous variable, is a aingle number representing the number of yeart of nonzero reported carnings. The aumary measure wal conatructed by counting the number of years from the year of antry into the labor force and the year of retirement when annual reported carninge were nonaero. Since workers with longer earnings history pay in more taxes, szRLEN was expected to have a negative coefficient. The coefficient on serlem was not predicted.

    The RAGER $i_{i}$ and RCOHORT ${ }_{i}$ dumy variables represent the expected value of the absolute difference in the dependent variable for each programworker characteriatic, ceteris paribua.

    RAGERI, RAGER2, and RNGER3 isolate the importance of retirement age of the beneficiary on the aize of the intergenerational transfor. The retirement age variable did not appear on the file, but with the use of variables on the file, it was possible to construct it, an follows:

[^26]:    ${ }^{\text {a }}$ Total family income includes OAI benefite in 1972.
    ${ }^{\text {bannuity }}$ counterfactual based on the traditional compounding scheme, an indexed annuity formula and sociocconomic survivorship tables.
    ${ }^{{ }^{\mathbf{I}} \text { In millions of dollars. }}$

[^27]:    ${ }^{1}$ The earnings test operates to reduce the beneficiary's annuity benefit by 50 cents for every dollar of post-retirement earnings greater then $\$ 1,680$ but less than $\$ 2,280$ and by $\$ 1.00$ for every dollar of earnings over $\mathbf{\$ 2 , 2 8 0}$ providing the beneficiary is younger than 72.

[^28]:    ${ }^{\text {a }}$ Raw data ueed to calculate the percentage of distribution for each family income classificetion is available upon request.

[^29]:    ${ }^{\text {I }}$ The magnitude of the program-type annuity benefit differential will diainiah and its sign will eventually reverse over time because annuity benefits received from an indexed program are augmented by ( $1+c)^{t}$ and unindexed benefits remain fixed in nominal terms.

[^30]:    Ausbend and wife are aligible for priancy-worker bencfits on their own accounte.
    blusband is eligible for primary-worker benefits on his own account and the wife is eligible for dependent apouse's benefits only.

[^31]:    $1_{\text {social }}$ security bulletin data show that the averase benefit for women workers to be about 60 percent higher than the wife's auxiliary benefit for this time period.

[^32]:    'Fifty percent of the two-carner man's yearly annuity benefit ainus 50 percent of the one-carner wan's yearly annuity bancfit.
    brifty percent of the two-earner man's share of his wife's yearly annuity benefit less 50 percent of the one-earner man's share of his wife's yearly annuity bencfic.

    CThe mean level of oAI bencfita received by a man in a two-earner household less the mean level of bencfits received by a man in a oneearner houcchold.

    The difference between redistribution components of men in twocarner and one-earner households.
    ${ }^{6}$ Total fonily income includes oal benefits in 1972.

[^33]:    Redistribution component calculations are based on type-6, earninge-adjusted counterfactuals.

[^34]:    ${ }^{4}$ For ages 40-61, Mationel Center for Health Statistics, Table 1
    (1964).
    ${ }^{\text {bror agee }} 62$ and older, Bago (1972).

[^35]:    apor ages 40 to 61, Hational Center for Health Statistics, Tables 5-9 (1964).
    ${ }^{6}$ Tor ages 62 and older, Bayo (1972).

